
Fast calculation of the average path
length in large complex graphs

Master’s Thesis

by

Mikuláš Poul
mikulas.poul.18@ucl.ac.uk

Supervisor

Dr Shi Zhou
s.zhou@ucl.ac.uk

This thesis is submitted as part requirement for the

Master of Science

in

Web Science and Big Data Analytics

at

University College London.

6th of September 2019

This thesis is substantially the result of my own work except where explicitly

indicated in the text. The report may be freely copied and distributed provided the

source is explicitly acknowledged.

©2019 Mikuláš Poul. All rights reserved.

An electronic version of this thesis and related source codes are available from the

website https://masters-thesis.mikulaspoul.cz/.

2

https://masters-thesis.mikulaspoul.cz/

Abstract

The average path length is one of the most commonly used properties of graphs,

an easily interpretable measure of the efficiency of a graph. The problem with it

is its high computational complexity. On graphs with tens or hundreds of thou-

sands of vertices, which are very common these days, the calculation becomes

prohibitively too slow for any real-time application or calculations on multiple

graphs. This thesis introduces an improved algorithm for calculating the average

path which uses the power-law distribution of the real-world scale-free graphs to

prune them for purpose of the pair-wise distance calculation, which can speed up

the calculation up to 8.6 times on real-world graphs. This thesis further experi-

ments with approximation using sampling on top of the improved algorithm. In

experiments with real-world graphs, this thesis achieves a maximum error of less

than 1% using sample size just 6% with a further tenfold speedup.

3

Acknowledgements

First and foremost I would like to thank my supervisor Dr Zhou. Without his

advice and thoughtful questions and comments, this thesis would not be what it is

today.

None of this would be possible without the love and support from my parents, so

my deep gratitude goes to them.

All science stands on top of the shoulders of giants and I am grateful to all authors

who published in topics relating to my thesis, as I have drawn inspiration and

guidance from their work.

I would also thank my friends who helped me with this thesis, especially in check-

ing for typos and advising on the typography of the text. Also thanks to Miro,

who supervised my bachelor’s thesis and who taught me to write long academic

texts.

4

Contents

1 Introduction 9

2 Basic definitions and notations 12

3 Literature review 15

4 Faster exact calculation 18

4.1 Analysis . 19

4.1.1 Complexity of computing the average path length 19

4.1.2 Properties of a power-law distribution 20

4.1.3 1-core simplification of a graph 21

4.1.4 2-chains simplification of a graph 26

4.1.5 Combined algorithm . 30

4.2 Implementation . 32

4.3 Experiments . 32

4.3.1 Test graphs . 33

4.3.2 Speed improvement . 34

4.3.3 Comparison to other tools 36

4.4 Further usage . 37

5 Approximation using sampling 39

5.1 Analysis . 40

5.1.1 Complexity . 42

5.2 Implementation . 43

5.3 Experiments . 43

5.3.1 Test graphs . 43

5.3.2 Experiments design . 44

5.3.3 Experiments results . 45

5.3.4 Speed of the approximation 49

5.4 Interpretation of results . 52

5

Contents

5.4.1 Differences between methods 53

5.4.2 Differences between weight distributions 55

6 Conclusion 58

A Bibliography 61

B Acronyms 65

C Approximation experiments results 66

D Approximation experiments thresholds 71

6

List of Figures

4.1 Illustration of a 1-core simplification of a graph 21

4.2 Illustration of a 2-chain simplification of a graph 26

4.3 Theoretical speed improvement in calculation of the APL 31

4.4 Degree distributions of the four test graphs 34

5.1 Approximation results on unweighted ba-graph 46

5.2 Approximation results on weighted ba-graph with unit weights . . . 47

5.3 Number of vertices sampled and counted on unweighted graphs . . . 50

5.4 Number of vertices sampled and counted on weighted graphs 50

5.5 Speed of approximation on unweighted graphs 51

5.6 Speed of approximation on weighted graphs 52

5.7 Distance distributions of the four test graphs 56

C.1 Result of approximation on unweighted graphs 67

C.2 Result of approximation on weighted graphs (unit) 68

C.3 Result of approximation on weighted graphs (normal) 69

C.4 Result of approximation on weighted graphs (uniform) 70

7

List of Tables

4.1 Overview of sizes of the four test graphs 34

4.2 Overview of the speedup on the test graphs 35

4.3 Comparison of the igraph’s APL with my naive one 37

5.1 Threshold results with method OU (mean error) 48

5.2 Threshold results with method OU (maximum error) 49

5.3 Approximation performance for set p for unweighted graphs 53

5.4 Approximation performance for set p for weighted graphs (normal) . 54

5.5 Approximation performance for set p for weighted graphs (uniform) 54

5.6 Standard deviation of the distance distributions 57

5.7 Excess kurtosis of the distance distributions 57

D.1 Threshold results on mean error on unweighted graphs 72

D.2 Threshold results on maximum error on unweighted graphs 72

D.3 Threshold results on mean error on weighted graphs (unit) 73

D.4 Threshold results on maximum error on weighted graphs (unit) . . . 73

D.5 Threshold results on mean error on weighted graphs (normal) 74

D.6 Threshold results on maximum error on weighted graphs (normal) . . 74

D.7 Threshold results on mean error on weighted graphs (uniform) 75

D.8 Threshold results on maximum error on weighted graphs (uniform) . 75

8

Chapter 1

Introduction

Graphs are a simple way of looking at naturally occurring phenomena in the real

world, which provide many insights on how the researched objects interact. A

graph consists of two sets of objects, a set of vertices, and a set of edges, which

connect these vertices (also called networks, nodes, and links respectively). Many

different properties can be calculated on a graph.

These days, with the emergence of social networks and improvements in data min-

ing, many real-world graphs grow in size very rapidly. The computational com-

plexity of calculating the properties differs by property, some can be calculated

quickly even on large graphs, but some others, not even very complicated proper-

ties, have prohibitively high complexity.

One of these basic properties is the average path length (APL) which is very often

used in graph analysis to show the efficiency, speed of communication or propaga-

tion within the graph. It is the average of all distances within a graph, so it shows

what distance has to be traversed before reaching all other vertices on average. The

computational complexity of calculating the APL goes up quickly because the dis-

tances from all vertices to all other vertices need to be calculated, and the problem

gets even worse on weighted graphs.

For any single graph, one might bear this, even though the calculation could take

a couple of hours on a usual workstation, but once one needs to calculate the value

for multiple different graphs, any possible speedup would save time and energy.

The time needed to calculate the value could be especially an issue for calculating

the value on temporal graphs, special graphs which have a different set of edges

at each step in time. These could be for example created by storing the structure

9

Chapter 1. Introduction

of a social network every day. Any improvement in the time complexity of the

calculation would then bemultiplied by the number of steps in the temporal graph.

The time complexity also prohibits usage of the average path length in real-time

applications for large graphs. In this world, all social media sites are graphs and all

technological networks running the world are graphs and the complexity prohibits

the real-time calculation of the APL on the constantly evolving graphs.

In some cases, the exact value is not even strictly necessary if there is a fast and

accurate approximation available. In exploratory data analysis when one needs

a quick overview of some graph’s properties, to get a sense of the graph, letting

a computer compute the exact value is a waste of both time and the electricity to

run the computer. Similarly, when for example comparing two graphs, exploring if

they are similar, comparing approximations can be sufficient enough to determine

the difference in values.

This thesis attempts to tackle both of these issues in the calculation of the average

path length, the time complexity and the approximation. First speeding up the cal-

culation of the exact value. I will explore speeding up the calculation by excluding

some of the vertices from the graph in the pair-wise distance calculation stage and

using other vertices to interpolate their distances to other vertices. There are two

ways this thesis will do so, one on both unweighted and weighted graphs and the

other only on weighted ones.

Vertices which are linked to only one other vertex can be excluded. Their distances

to all other vertices are simply the distance from the only vertex they are connected

to plus the distance to that vertex.

After excluding the vertices only linked to one other vertex, another set of vertices

have a trivial distance to all other, vertices which are linked to only two other

vertices, the distance to all other vertices is through one of the two. This method

only works well on weighted graphs, because after the exclusion a new edge has

to be created with the sum of the two excluded edges, which requires already a

weighted graph or a creation of one.

10

Chapter 1. Introduction

I believe the effect of this exclusion methods can have a large effect on speeding

up the calculation, especially in real-world scale-free graphs, where vertices with

a degree just one or two form a big part of the graph. As far as I know, nobody

has yet proposed this solution to speed up the average path length.

Then, the approximation of the average path length. Ye et al. proposed a random

vertex sampling method to approximate the value in [1], which uses distances

from a portion of the vertices to all other vertices to approximate the average. In

the second part of the thesis, I will try to reproduce the results in that paper on

other graphs and experimentmore broadlywith the samplingmethods and the size

of the set used for the approximation. I will also closely follow the speed of the

approximation with relation to the accuracy to suggest a method to get accurate

results very quickly, something the authors did not focus greatly on.

The thesis is structured as follows. The next chapter defines basic concepts used

in the report and their notation. Chapter 3 reviews past research into speeding

up the calculation and approximations of the average path length and some other

properties. Chapter 4 focuses on the speeding up of the exact calculation and

chapter 5 focuses on the approximation. The thesis closes with a conclusion in

chapter 6.

11

Chapter 2

Basic definitions and notations

This chapter describes and defines the basic concepts used in the rest of this thesis

and shows what notation will be used.

Graphs are mathematical structures used for precise descriptions of objects and

their relations. A graph G is composed of a set of verticesV and a set of edges E , an

explicit notation of a graph would be G(V,E), but unless specific sets are referred,

this can be omitted. An edge is an unordered pair with the two linked vertices,

in mathematical notation {a,b}, a,b ∈ V , a ̸= b. The unordered part means that

if there exists an edge between vertices a and b there also automatically exists an

edge between b and a.

This definition can be extended to add a direction to edges to create a directed graph

compared to the undirected graph defined above. In a directed graph an edge would

be an ordered pair where the first vertex is the source and the second is the target,

however, this thesis only considers undirected graphs.

This definition does not allow self-loops, meaning a vertex can not be linked to

itself. Similarly, parallel edges, where there exist multiple connections between

the same two vertexes, are not allowed. The definition can be extended to allow

these, but again, for simplicity, this thesis does not consider such graphs.

A weight can be associated with an edge, creating a weighted graph. This weight is

noted bywa,b ∈R, as the weight of the edge between a and b. In case of the vertices

not being connected, this value is infinity, in mathematical notation {a,b} /∈ E ⇒

wa,b = inf. Since the graph is undirected, wa,b = wb,a. This thesis only considers

positive weights without zero weights.

12

Chapter 2. Basic definitions and notations

The number of vertices is expressed by n or |V |, the number of edges in the graph

is expressed by m or |E|. Graphs are also called networks, vertices are called nodes

and edges links, this thesis will use the terms interchangeably.

The degree of a vertex represents the number of edges of that vertex, noted by

deg(a) or degG(a) for a specific graph G. The set of other vertices directly linked

to vertex v is called a neighbourhood (noted by N(v)) and individual vertices from

that set are called neighbours.

A path is a sequence of edges in a graph which connects two vertices. Length of a

path is defined as the number of edges in a path for an undirected graph, or as a

sum of the weights of the edges in a directed graph. A shortest path if such a path

that has the shortest length. The length of the shortest path between two vertices

is called the distance of those two vertices. The distance is noted by da,b if a path

between the two vertices does not exist the distance is infinite.

The maximum distance from a vertex to any other vertex is called the eccen-

tricity of that vertex, noted by ev for vertex v. In mathematical notation it is

ev = maxw∈V,a ̸=w dv,w. The maximum eccentricity in a graph is called the diam-

eter of a graph, the minimum is called radius. The effective diameter is the lowest

value at which a certain percentage of vertices can be reached from all vertices,

e.g. 90%.

Subgraph S(VS,ES) of a graph G(VG,EG) is a graph where the sets of vertices and

edges are subsets of the sets in the original graph,VS ⊆VG andES ⊆VG. An induced

subgraph is a subgraph which includes all edges from EG between vertices inVS. A

connected component (or sometimes just a component) is an induced subgraph such

that there exists a path between any two vertices in it and any of the vertices are

not connected to a vertex outside the subgraph. The largest connected component

(LCC) is the connected component with the most vertices.

The average path length (APL), also average shortest path length or average distance,

within a connected component S(V,E) is defined in equation 2.1. It could be re-

13

Chapter 2. Basic definitions and notations

defined for a whole graph comprised of multiple components, but this thesis will

only focus on connected components.

lS =

∑
i, j∈V,i ̸= j

di, j

|V | · (|V |−1)
(2.1)

A tree is a graph where any two vertices are connected by exactly one path, or also

a connected graph without any cycles. A forrest is a graph comprised of multiple

trees.

A temporal graph is a graph which has a different set of edges at each point or step

in time.

14

Chapter 3

Literature review

As far as I am aware, there is no current approach available for speeding up the ex-

act calculation of the average path length (APL), so, unfortunately, there is nothing

to review or learn from there. There have been some papers relating to the approx-

imation of APL, which I will discuss. There has been significantly more work done

in approximating some other graph properties related to the APL, which I will also

discuss.

One of the main sources I am using in this thesis (mainly chapter 5) is a 2010 paper

“Distance Distribution andAverage Shortest Path Length Estimation in Real-World

Networks” by Ye et al. [1]. This paper explores the distribution of distances within

a graph and finds that it usually follows a normal distribution with a mean and

standard deviation. They further explore multiple methods to estimate the APL

using sampling methods. Out of the four methods they proposed, only the random

vertex sampling produces an unbiased and stable estimation of the value, which

they show on a variety of real-world graphs and even provide a mathematical basis

for the estimation, based on the normal distribution of the distances. They only

focus on largest connected component (LCC) on undirected unweighted graphs.

The paper tested the approximation with several sample sizes on different scales,

but it does not go into detail how to select the sampling size and it does not consider

the speed of the approximation almost at all.

I am also only focusing on undirected graphs, but there is an interesting paper

analysing the random vertex sampling method on directed graphs and specifically

on the largest weakly connected component (LWCC) of the graph. The 2017 “Fast

approximation of average shortest path length of directed BA networks” by Mao

15

Chapter 3. Literature review

and Zhang [2] introduces Global Reachable Nodes (GRN), vertices which can reach

most of the other vertices in the graph. APL on the LWCC of directed graphs is

calculated similarly to APL on an LCC of undirected graphs, but only distances to

vertices which can be reached from a vertex are summed and divided. Therefore

the GRN have a much bigger effect on the value of the APL than other nodes, the

paper shows that by using just the GRN of the network provides a value very close

to the true APL. The problem, of course, is that to find all the GRN one needs to

calculate reachability and distances from all vertices. They, therefore, resort to

sampling vertices and they find that if the sampling is random, there are enough

GRN in the sampled set to provide a good approximation. They tested on much

larger graphs than this thesis, but only with a couple of sample sizes. Their max-

imum accuracy error was lower than 1% for all the graphs. They, unfortunately,

did not go into much detail about the selection of the sample sizes.

There are a couple of approaches which use landmarks or pivots to approximate

the distances on the graph itself and use those distances to calculate the average

path length. For example [3] focuses on the selection of the landmarks, intro-

ducing heuristics which provide good results. Then [4] focuses on also providing

the actual path as well, and it provides very quick and very accurate results at the

cost of a massive pre-built index, with storage requirements exceeding the original

graph.

There are properties related to the average path length which were research signif-

icantly more as it seems, namely the radius, diameter and the effective diameter.

One of the papers which focused on that is a 2013 paper “Computing the eccentric-

ity distribution of large graphs” by Takes and Kosters [5]. This paper introduced

a method which can speed up the calculation of the exact value using pruning of

the graph (the inspiration for a part of chapter 4) and using bounds for the values

of the eccentricity of each vertex. Then they introduce an approximation as well,

which uses sampling to calculate the value.

Another influential paper on this topic is the 2002 “ANF: A fast and scalable tool

for data mining in massive graphs” by Palmer et al. [6]. This paper does approx-

16

Chapter 3. Literature review

imation on the neighbourhood function, another measure of the connectivity and

distances in graphs, showing what percentage of vertices can be reached at a cer-

tain distance (which can also be used to calculate the effective diameter). They use

multiple runs of sampling and bitwise magic on adjacency matrix to approximate

the neighbourhood function – I will not pretend I understand exactly how it works.

There is an extension of the approach with the 2011 paper “HyperANF: Approx-

imating the neighbourhood function of very large graphs on a budget” by Boldi

et al. [7], which uses better counters which speed it up further. The paper also

provides a way to approximate the average path length using the neighbourhood

function.

I would like to also mention one other paper, which is not strictly related to the

average path length and that is the 2009 paper “Conservation of alternative paths

as a method to simplify large networks” by Liu andMondragón. This paper focuses

on the reduction of vertices within a graph that keeps the number of alternative

paths between the vertices, using vertex contraction, merging of several vertices.

It reduces the number of vertices but keeps the complexity of the paths within

the graph, but it inspired me for part of chapter 4 together with the eccentricity

distribution paper.

17

Chapter 4

Faster exact calculation

This first part focuses on speeding up the calculation of the exact average path

length (APL) in large graphs. The average path length is one of the most common

properties used to describe a graph. It is a simple and explainable measure of

efficiency and speed of communication within a graph.

The trouble is that with the growing size of a network calculating the average path

length gets harder, because of the complexities of algorithms for finding the pair-

wise distance between all vertices, as all the distances are needed for the exact

value. This is especially the case for weighted graphs, where the algorithms are

comparatively slower to unweighted graphs, as is discussed in detail in section 4.1.

Large graphs are very common these days, in the age of constant data collection,

and once the number of vertices reaches a certain point, the time to calculate the

distances becomes prohibitive.

Many of the real-world graphs are also constantly changing, especially in the case

of social networks. This means that if somebody wants to track the changes in the

average path length, the value has to be calculated in all the stages of the collected

temporal graph. This, depending on the size of the network and the frequency

of the data collection, can make the calculation very slow. Any speedup of the

calculation on a single graph then makes the speedup on temporal graphs even

larger in terms of the absolute amount of time.

Any real-time analysis of these dynamic graphs is also not possible due to the

complexity of the problem. For all of these reasons, any speedup to the calculation

is useful.

18

Chapter 4. Faster exact calculation

Many of the real-world graphs are so-called scale-free, meaning they follow a

power-law degree distribution. These scale-free graphs include social networks,

web networks and many other types of real-world graphs [8]. A scale-free graph,

thanks to its distribution, has a large portion of vertices with a low degree. From

some of these vertices, the distances to other vertices can be much more easily

calculated than through the classical algorithms, so they can be dropped from the

expensive pair-wise distance calculations, leading to a speedup. This is the case for

all vertices with degree one and two, and depending on the graph some vertices

with a slightly higher degree can be excluded as well.

For this thesis, only undirected graphs and the largest connected components are

considered. The approach could be updated to work on directed graphs, similarly

also across multiple components, but it would add unnecessary complexity and

edge cases for this thesis.

4.1 Analysis

4.1.1 Complexity of computing the average path length

Algorithm 1 shows the algorithm for summing of pair-wise distances. This spe-

cific version assumes a connected component as mentioned in the introduction of

this chapter, for simplicity. Out of the box we see that the complexity of the sum

is O(n2), without even calculating the pair-wise distances between the vertices.

O(n2) is also the space complexity of calculating the average path length because

all the distances need to be stored.

Algorithm 1 Summing of pair-wise distances
s = 0
for all i ∈V do

for all j ∈V , j ̸= i do
s += di, j

return s

This complexity could be reduced to O(n(n− 1)/2) if a triangle sum would be

used. Asymptotically it is the same complexity so for simplicity I did not include

19

Chapter 4. Faster exact calculation

that here or in the improvements. Not including this specific change also shows

that the algorithms could be converted for directed graphs.

The complexity of getting the pair-wise distance depends on the type of graph.

There are two algorithms for computing the pair-wise distance, Johnson’s algo-

rithm with complexity O(nm+ n2 logn) [9] and Floyd-Warshall algorithm with

complexity O(n3) [10]. The Floyd-Warshall algorithm is only useful for dense

graphs, and therefore is not useful here as large scale-free graphs are sparse [11].

There is also a more basic approach available for unweighted graphs, running a

breadth-first search (BFS) from each vertex at complexity O(n(n+m)) [12]. This

approach also allows for easier parallelisation.

4.1.2 Properties of a power-law distribution

Scale-free graphs follow a power-law distribution, meaning that the probability of

a vertex having a certain degree follows the distributionP(d)∼ d−γ , where usually

2 < γ < 3 [8]. An example of this degree distribution can be seen in figure 4.4 on

page 34, showing the degree distributions of the four graphs used further in this

chapter.

The consequence of this degree distribution is that a large portion of vertices in the

graph has a very small degree. For example, for a graph with an ideal power-law

distribution, depending on the γ of the specific graph, just the portion of vertices

with a degree just one or two is 0.5 to 0.75. This is only the ideal case, the power-

law distribution can only fit from a specific degree and the distribution until that

degree can be different, but either way, the portion of such vertices is high.

In real graphs, this number can vary significantly. When considering graphs that

are used further in the chapter, in graph cond-mat-2003 21% of vertices have de-

gree one or two and in graph as-22july06 it is 76%. In the randomly generated

ba-graph the percentage is 44%. As a nice example that this high percentage is a

property scale-free graphs, the er-graph only has 8% of vertices with degree one

or two.

20

Chapter 4. Faster exact calculation

4.1.3 1-core simplification of a graph

The large number of vertices with degree one can be used to simplify the pair-

wise distance calculation and in that speeding it up. Let’s take a portion of a graph

shown in figure 4.1, with dotted lines from vertices a and c indicating a connection

to more vertices in the rest of the graph. The figure shows that any path from e

to all other vertices passes through vertex b. Its distance to any other vertex x

is we,b + db,x. One can then remove the vertex from the graph for the pair-wise

distance calculation and then just take it in account in the summing of distances.

The situation is similarwith verticesmarkedwith an orange border, f to j, any path

to all other vertices passes through vertex b, with the exception to other vertices

marked with the same colour. Distance to the other vertices is therefore the sum

of distance to b from both ends, for example for i the distance to a random x is

di,b +db,x, and the distance to a vertex x with the same colour is simply di,x.

Note that vertices with a degree more than one and two can be included in this,

take vertex g, which has degree 4.

b

a

c

d

e

f

g

h

j

i

Figure 4.1: Illustration of a 1-core simplification of a graph

This simplification is inspired by the 2013 paper “Computing the eccentricity distri-

bution of large graphs” by Takes and Kosters [5]. This paper focuses on efficiently

computing the eccentricity distribution (and the radius and diameter). When cal-

culating the eccentricity one is only interested in the longest path, not all the paths,

so they reduced multiple one-degree vertices neighbouring a single vertex to one,

as that retains the maximum distance. I was inspired by this to remove all the

21

Chapter 4. Faster exact calculation

vertices with degree one with the update to the sum of distances and realised that

actually, the simplification can continue further.

4.1.3.1 Definitions

Let’s describe these concepts more precisely. This reduction can be performed

on the 1-core of the graph. A 1-core is a set of vertices obtained by iteratively

removing all vertices from the graph with degree 1 until all other vertices have a

degree higher than 1, the 1-core being the removed vertices. This is a specific case

of a k-core, where this can be done for any degree [13]. When an induced graph

with only the vertices from the 1-core is created, it is a forest, a graph comprised

of multiple trees.

Let’s define some notation for vertices in the 1-core and their properties. First,

let V 1 denote the set of vertices in the 1-core and n1 the size of this set. Let pi

denote the closest vertex outside the 1-core to which there exists a path from i and

di the distance to that vertex. Let ti denote be the identifier of the tree on which i

appears because as shown in the example figure, multiple trees can be connected

to the same vertex outside the 1-core. Additionally, let V t
a be the set of vertices

with a being their tree identifier and T be set of tree identifiers.

4.1.3.2 Algorithm for the average path length calculation

Algorithm 2 shows the algorithm for summing of pair-wise distances with the 1-

core simplification. For a vertex outside the 1-core, the sum of distances from that

vertex is the sum of distances to other vertices outside the 1-core plus the distances

to vertices in the 1-core (via their closest vertex). For a vertex in the 1-core, this

can be simplified as the sum is linked to the sum of distances of its closest vertex. It

is the sum of the distances from the closest vertex to all vertices, with the distances

from the closest vertex to vertices on the tree being replaced with distances just

within the tree, plus the distance to the closest vertex times the size of vertices

outside the current tree.

22

Chapter 4. Faster exact calculation

Algorithm 2 Summing of pair-wise distances after 1-core reduction
s = 0
for all i ∈V \V 1 do

si = 0 ▷ Sum of distances from vertex i
si,t = 0, ∀t ∈ T ▷ Sum of distances from i to tree t
for all j ∈V \V 1, j ̸= i do ▷ Distances to other remaining vertices

si += di, j

for all j ∈V 1 do ▷ Distances to 1-core vertices
p = p j, q = t j
si,q += d j +di,p

si += ∑t∈T si,t
s += si

for all j ∈V 1 do
p = p j, q = t j
s j = sp +d j · (|V |− |V t

q |)− sp,q ▷ Distances outside the tree
for all l ∈V t

q do ▷ Distances in the same tree
s j += d j,l

s += s j

return s

4.1.3.3 Detecting the 1-core

With this updated algorithm the pair-wise distance has to be calculated only on

the induced subgraph with verticesV \V 1 and on induced subgraphs of individual

trees. First, though, the 1-core has to be detected, showed in algorithm 3.

The 1-core detection is based on the algorithm for detecting the k-core value by

Batagelj and Zaveršnik [14], modified to just detect the 1-core. The algorithm first

works on an iterative basis, first processing vertices with degree 1, then vertices

that would have a degree 1 if the previous were removed and so on while there are

vertices to process. The neighbour not yet in the setV 1 is marked as the temporary

closest vertex.

Once all the vertices in the 1-core are found, they are iterated over in the reverse

order they were found in, and the distance from the closest vertex is calculated and

the tree identifier set. The tree identifier is the vertex from a tree that is directly

connected to the closest vertex. Since the order of finding vertices in the 1-core is

from the furthers from the closest vertex of the tree, the distance and tree identifier

23

Chapter 4. Faster exact calculation

Algorithm 3 Detecting the 1-core, distances to closest vertices and tree identifiers
V 1 = empty set
Q = empty queue
O = empty list ▷ Order of discovery
sv = deg(v), pv =∅,∀v ∈V
for all v ∈V, sv = 1 do ▷ Start with vertices with degree 1

push v into Q
while Q is not empty do

pop v from Q
add v to V 1, append v to O
for all w ∈ N(v) do

if w /∈V 1 then
sw −= 1 ▷ Simulate v being removed
pv = w
if sw = 1 then ▷ After removal of v degree of w would be 1

push w into Q
dv = 0, tv =∅,∀v ∈V 1

for all v ∈ O in reverse order do
if pv /∈V 1 then ▷ pv is the closest vertex

tv = v ▷ Set tree identifier to self
dv = wv,pv

else
tv = tpv

dv = dpv +wv,pv

for all v ∈V 1 do
pv = ptv

can be passed through as a message. The final closest vertex of each edge is the

temporary closest vertex of the vertex set as tree identifier.

4.1.3.4 Complexity

Let’s recall that the complexity of finding the average path length with the ba-

sic approach is O(n2 + nm+ n2 logn). When using the 1-core simplification the

complexity has a couple of more terms, but it is better if the 1-core is significant.

For simplicity let’s define nr = n−n1 and mr = m−n1, as the number of vertices

and edges in the remaining part of the graph. The number of edges removed with

the 1-core equals the number of vertices in the 1-core. This is due to a tree having

24

Chapter 4. Faster exact calculation

exactly one less edge than the number of vertices, but each of these trees has to be

connected to the rest of the graph.

Finding of the 1-core has a complexity of O(n+ n1), n because of the initial pass

through and the rest is the loops over the vertices of the 1-core. The complexity

of the sum of distances depends on how many individual trees are in the 1-core,

in the worst case all of 1-core would be in one big tree and the complexity would

be O(n · nr + n2
1). It would be unusual, but the complexity is still better. And

then pair-wise distances, for the main componentO(nrmr+n2
r lognr) and then for

individual trees, in the worst caseO(n2
1+n2

1 logn1). So the final complexity in the

worst case would be O(n2
r lognr +n2

1(2+ logn1)+nrmr +n(1+nr)+n1).

That is the worst-case scenario, in real graphs the 1-core will not be one big tree,

it will be many small ones, actually, most of them would be single vertices. That

adds a little more improvement to the complexity. Let’s say that t is the average

tree size, then the complexity of the sum is O(n ·nr +n1t), and the complexity of

finding pair-wise distances in the trees is O(|T | · t2 log t). In the four test graphs

used later in the chapter, the average tree size is between 1 and 1.2, which makes

the complexity better, but the most time-complex part is still the complexity of

Johnson’s algorithm on the remaining part of the graph. In other graphs I have

examined most of the 1-core is just single vertices, just as in the four test graphs.

Let’s also consider for a moment the complexity when using multiple BFSs, orig-

inally with complexity O(n2 + n(n+m)). The complexity of the updated algo-

rithm isO((n+n1)+(n ·nr +n2
1)+(nr(nr +mr))+(n1(n1+n1))) which equals to

O(nr(nr+mr)+n2
1+n(nr+1)+n1). Still an improvement, but relatively a smaller

one compared to the improvement while using Johnson’s.

This algorithm also has a better memory complexity, the original having a O(n2)

requirement, this improved has O(n2
r + n2

1 + n1). The algorithm allows for paral-

lelisation.

25

Chapter 4. Faster exact calculation

4.1.4 2-chains simplification of a graph

After the 1-core is removed, there are still many vertices with degree two remain-

ing in the rest of the graph, and this can include vertices with degree originally

higher thanks to a connection to the 1-core tree. These can be used to further speed

up the calculation.

Figure 4.2 contains illustration of the general idea. First a graph after removing 1-

core vertices in figure 4.2a. Vertices with degree 2 are marked with a green border,

other with a blue border. For example vertex m, a path to any other vertex must go

through either a or c, and the distance to an other vertex x is min(da,x+wa,m,dc,x+

wc,m). This works even for multiple linked vertices of degree 2, e.g. vertices n and o.

For them the distance to other vertices is again either through a or c, but with the

distance to an other vertex x is min(da,x + da,m,dc,x + dc,m) instead. These linked

vertices of degree 2 will be further referred to as 2-chains.

Therefore the vertices in 2-chains can be removed from the graph and instead re-

placed by a new edge with weight being the sum of weights of edges being re-

moved. In case there are multiple 2-chains between the same vertices, only one

edge can be created with the minimum weight. The result of this reduction is

shown in figure 4.3b, new edges are marked with green with their weights listed

(with the weights of the original edges being all ones).

a

b

c

d

e

f

g

i

h

j

k

l
m

n

o

(a)The original graph

a

b

c

d

e

f

4

2

3

2

(b) The reduced graph

Figure 4.2: Illustration of a 2-chain simplification of a graph

This idea is inspired by a 2009 paper “Conservation of alternative paths as amethod

to simplify large networks” by Liu and Mondragón [15], which focused on the

simplification of graphs while retaining the same number of alternative paths. This

26

Chapter 4. Faster exact calculation

does not preserve the number alternative paths (even shown in the example, one

alternative path is lost in the reduction between a and c), but it does preserve

distances between the remaining vertices and connectivity.

4.1.4.1 Definitions

Let’s again define things precisely, on a graph that’s already been simplified by

removing the 1-core. The following specification works for undirected graphs,

regardless of having weights. If the graph does not have weights, unit weights are

assigned to each edge.

Let 2-chain be a term for a set of connected vertices with degree two, and let V 2
i

denote that set, i being the chain identifier and C the set of chain identifiers. Let

V 2 denote the set of vertices in all 2-chains in a graph and m2 size of that set. The

2-chain always connects two vertices, lets call them closest vertices, so let’s say that

for a vertex v, one of them is left, denoted by pl
v, and other is right, denoted by pr

v.

There are of course no directions in graphs, but let’s use that term in this context.

All vertices from a single 2-chain will have the same left and right closest vertices.

For a vertex v, the distance to pl
v and pr

v is dl
v and dr

v respectively. A property of all

vertices in a chain having the same left and right closest vertices, the distance of

two vertices v and w from the same chain is |dl
v −dl

w| or |dr
v −dr

w| (only works on

positive weights, but others are not considered in this thesis). Let cv be the chain

identifier of vertex v, and finally, let’s use d2
i for the distance of the chain i from

one closest vertex to the other.

4.1.4.2 Algorithm for the average path length calculation

Algorithm 4 shows the algorithm for summing of pair-wise distances using the 2-

chain simplification. The distance from remaining vertices to vertices in 2-chains

and vice-versa is the minimum of the path through one or the other closest vertex.

The distance from a vertex from a 2-chain to another vertex in a 2-chain is the

minimum of distances through both closest vertices, so four options, for vertices

on the same 2-chain also the path within the 2-chain must be considered.

27

Chapter 4. Faster exact calculation

Algorithm 4 Summing pair-wise of distances after 2-chain reduction
s = 0
for all i ∈V \V 2 do ▷ Distances from remaining vertices

for all j ∈V \V 2, j ̸= i do ▷ Distances to other remaining vertices
s += di, j

for all j ∈V 2 do ▷ Distances to 2-chain vertices
pl = pl

j, pr = pr
j

s += min(dl
j +di,pl , dr

j +di,pr) ▷Through one of two closest vertices
for all i ∈V 2 do ▷ Distances from 2-chain vertices

pl = pl
i , pr = pr

i
for all j ∈V \V 2 do ▷ To remaining vertices

s += min(dl
i +d j,pl , dr

i +d j,pr) ▷ Again through one or other
for all j ∈V 2, j ̸= i do ▷ To other 2-chain vertices

nl = pl
j, nr = pr

j
▷ Distance through both closest vertices of both vertices

l = min(dpl ,nl +dl
i +dl

j, dpl ,nr +dl
i +dr

j)

r = min(dpr,nl +dr
i +dl

j, dpr,nr +dr
i +dr

j)
if ci = c j then ▷ On the same 2-chain

x = min(l, r, |dl
i −dl

j|) ▷ Consider distance within chain
else

x = min(l, r)
s += x

return s

4.1.4.3 Detecting the 2-chains

Algorithm 5 shows detecting 2-chains and their properties. First, all vertices with

degree 2 are added to the set V 2, and then the neighbouring vertices are traversed

until all vertices in V 2 are not assigned to a specific chain. In the traversal in

both directions, the closest vertices are also detected. Once the closest vertices are

detected, each chain is traversed in order and the distance is calculated by adding

weights of the edges to each vertex from one side, then the chain is traversed back

and distances are set from the other side.

4.1.4.4 Complexity

The complexity of calculating the average path length, mainly the summing of all

distances, is still O(n2) just as in the naive approach. The summing is two nested

28

Chapter 4. Faster exact calculation

Algorithm 5 Detecting 2-chains, their closest vertices, distances to them, sorting
into individually identified chains

function traverse(v, c) ▷ Traverses chain of vertices with degree 2
R = {v}
p = v ▷ Previous in path
while deg(c) = 2 do

add c to R
n = N(p)−{p} ▷ Next is the unvisited neighbour
p = c, c = n

return R, c ▷ Returns traversed vertices and vertex connected to it
V 2 = empty set
H = empty set ▷ Working copy of V 2

for all v ∈V, deg(v) = 2 do
add v to V 2

copy V 2 to H
C = empty set, i = 0 ▷ Set of chain identifiers
while H is not empty do

pop v from H
R0, pl = traverse(v, N(v)[0]) ▷ Traverse in one direction
R1, pr = traverse(v, N(v)[1]) ▷ Traverse in other direction
for all w ∈ R0 ∪R1 do ▷ Process all found vertices on chain

pl
w = pl , pr

w = pr

cw = i, push w into set V 2
i

pop w from H
add i to C, i += 1

for all i ∈C do
pl = pl

v, pr = pr
v, v ∈V 2

i ▷ Any vertex from V 2
i

D = empty list, O = empty list
p = pl , d = 0
n = v(∈ N(pl)∩V 2

i)
while n ̸= pr do ▷ Traverse chain from one direction setting distances

d += wn,p, dl
n = d

add d to D, n to O
m = x ∈ (N(n)−{p})
p = n, n = m

d += wn,p, d2
i = d

for all n ∈ O, e ∈ D in reverse order do ▷ Traverse from other direction
dr

n = d − e

29

Chapter 4. Faster exact calculation

for loops over all vertices, with some extra operations, but asymptotically still

O(n2).

The detection of the 2-chains has time complexity ofO(n+n2), first the pass over

all vertices and then several passes over all the chains to find the closest vertices

and the distances.

The pair-wise distances have to be calculated on the rest of the graph, which has

nr = n−n2 vertices, and mr = m−n2 edges. Each chain has one more edge than

the number of vertices on it, and one edge has to be created for each chain, in the

worst-case scenario, if there is exactly one chain between any two sets of closest

vertices, if there are multiple the reduction in edges is bigger.

Since this simplification always creates a weighted graph, it is unsuitable for previ-

ously unweighted graphs to use this approach, because the multiple BFS algorithm

cannot be used. The complexity of finding the pair-wise distance on the rest of the

graph is then O(nrmr +n2
r lognr).

Overall complexity using just this approach is then O(nrmr +n2
r lognr +n2 +n+

n2), compared to the original O(nm+n2 logn+n2).

4.1.5 Combined algorithm

When the two simplifications are combined, all of the vertices with degree 1 or 2

and some other vertices depending on the graph can be removed from the graph

for the purposes of calculating the pair-wise distance, the most significant part of

the time complexity. However, the 2-chain simplification requires the graph to

be converted to a weighted graph and Johnson’s algorithm is needed for the pair-

wise distance calculation on them. Therefore, for originally unweighted graphs,

only 1-core simplification should be applied.

When combining the two simplifications, one must only consider the subgraph

without the 1-core when detecting 2-chains, and in the sum implement a special

case for 1-core trees which have their closest vertex on a 2-chain.

30

Chapter 4. Faster exact calculation

The time complexity for unweighted graphs is then the same as listed above,

O(nr(nr +mr)+n2
1 +n(nr +1)+n1).

The final complexity for weighted graphs requires further analysis. Let’s recall,

that the number of edges in the 1-core is n1 and in 2-chains is n2. Complexity of

detecting the 1-core is O(n+n1), complexity of detecting the 2-chains is O((n−

n1)+n2). The complexity of the sum has the same complexity as the sum just using

the 1-core, so O(n(n− n1)+ n2
1). Let’s define the sizes of remaining subgraph as

nr = n−n1−n2 andmr =m−n1−n2. The pair-wise distances have to be calculated

for the remaining vertices at complexity O(nrmr +n2
r lognr), and within the trees

atO(n2
1(1+ logn1)). The distance within 2-chains is calculated with the detection.

So the final complexity isO(nrmr +n2
r lognr +n(n−n1+2)+n2

1(2+ logn1)+n2).

The space complexity is O(n2
r +n2

1 +n1 +n2).

The figure 4.3 shows the theoretical speedup of the algorithms on graphs with two

slightly different properties. It is apparent that the average degree (and with that

the number of edges), and percentage of vertices with degree one or two matters

greatly. The figure also shows that the calculation for undirected graphs is quicker.

0 50000 100000 150000 200000
n

Ti
m

e

1.51x

1.12x

Johnson's basic
Johnson's with 1-core
Johnson's with 1-core and 2-chains
BFS basic
BFS with 1-core

(a) For a graph with similar properties as
cond-mat-2003, average degree 4.2, 1-core
being 8% of vertices and 2-chains being 13%

0 50000 100000 150000 200000
n

Ti
m

e

2.63x

1.42x

Johnson's basic
Johnson's with 1-core
Johnson's with 1-core and 2-chains
BFS basic
BFS with 1-core

(b) For a graph with similar properties as
ba-graph, average degree 2.5, 1-core being
25% of vertices and 2-chains being 21%

Figure 4.3: Theoretical speed improvement in calculation of the APL. Vertical
lines show the multiplicity of the original time complexity versus the improved.

31

Chapter 4. Faster exact calculation

4.2 Implementation

I implemented the improved algorithms as an extension to the graph-tool [16]

package, an efficient package for working with graphs. It is made for Python, but

most of it is implemented in C++, using the boost graph library [17], which makes

it very fast and it allows for parallelisation of multiple algorithms. I chose it over

other Python packages because of its speed and the parallelisation functionality

(more about the speed in section 4.3.3). Graph-tool uses OpenMP [18] for paralleli-

sation and I did as well in the implementation of my algorithms.

For pairwise distance graph-tool uses Johnson’s algorithm in case of weighted

graphs and the parallel BFS in case of unweighted.

I implemented the algorithms as an extension to graph-tool, meaning that once

graph-tool is installed (in anyway described in its documentation), one just needs

to compile the extension using a provided Makefile. The extension, nicknamed

springbok, comes in two parts, the Python interface, and the C++ implementation.

The Python interface contains two functions, one which provides the APL using

the naive algorithm, described in section 4.1.1. The other function provides the

APL using the improved algorithm, described in section 4.1.5.

Both of these functions use a combination of graph-tool functionality and the

C++ implementation. The functionality used from graph-tool is mostly the pair-

wise distance calculations and creating subgraphs with vertices from the 1-core

and 2-chains removed. The C++ implementation provides several functions as

well, some parallelisable, for calculating the sum of distances and the average path

length in the naive and improved ways, and detection of 1-core and 2-chains.

The code open-sourced under the MIT license [19] can be found in the repository

of my proof of concept code for this thesis, link provided on page 2.

4.3 Experiments

To verify the correctness of the algorithm and the theoretical speedup I ran both

the original algorithm and the improved algorithms on four test graphs. For each

32

Chapter 4. Faster exact calculation

graph I ran the variants for both unweighted and weighted graphs ten times, to

get an average time both in actual time passed and CPU time. I ran the code on

an Intel® Core™ i7-5500U CPU @ 2.40GHz, 4-core computer with 8GB memory.

None of the graphs had weights associated with them, so I assigned unit weights to

edges in the weighted experiment, to verify the correctness of the results against

unweighted graphs as well.

4.3.1 Test graphs

Two of the test graphs are real-world and two are randomly generated. All four

are undirected and unweighted, so for experiments on weighted graphs I assigned

edges unit weights, so results of the average path length are comparable.

The first real-world network I used was as-22july06, a “a symmetrised snapshot of

the structure of the Internet at the level of Autonomous Systems (AS)” from 2006 [20].

This is an example of a technological network. The largest connected component

(LCC) contains 22963 vertices and 48436 edges.

The second real-world network I used was cond-mat-2003, a network of coau-

thorships between scientists posting preprints to a journal about condensed mat-

ter [21]. This is an example of a social network. The LCC contains 27519 vertices

and 116181 edges.

The first randomly generated graph is a Barabási-Albert (BA) random graph [8],

generated with m one to four in equal proportions, and then five iterations of a

random rewire of all edges. The random rewire algorithm I used is such that the

graph retains the degree sequence of the graph, implemented by graph-tool [16].

I will be referring to this graph as ba-graph. The LCC contains 27621 vertices and

69794 edges.

The second generated graph is a Erdős-Rényi (ER) random graph [22], with each

vertex having a random degree between 1 and 10. I will be referring to this graph

as er-graph. The LCC contains 27884 vertices and 77075 edges.

33

Chapter 4. Faster exact calculation

Figure 4.4 contains the degree distributions of the four graphs. All except the

er-graph are scale-free, meaning they have a power-law degree distribution.

100 101 102 103

Degree

10 4

10 3

10 2

10 1

Po
rti

on
 o

f v
er

tic
es

(a) Degree distribution of as-22july06

100 101 102

Degree

10 4

10 3

10 2

10 1

Po
rti

on
 o

f v
er

tic
es

(b) Degree distribution of cond-mat-2003

100 101 102

Degree

10 4

10 3

10 2

10 1

Po
rti

on
 o

f v
er

tic
es

(c) Degree distribution of ba-graph

2 4 6 8 10 12 14 16 18
Degree

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
Po

rti
on

 o
f v

er
tic

es

(d) Degree distribution of er-graph

Figure 4.4: Degree distributions of the four test graphs

Table 4.1 contains the basic overview of the graphs. Only a small portion of vertices

with degree higher than 2 were removed with the 1-core and 2-chains, 280 for

as-22july2006, 169 for cond-mat-2003, 691 for ba-graph and 34 for er-graph.

Name LCC n LCC m 1-core 2-chains Reduced n Reduced m
as-22july06 22963 48436 7997 9823 5143 25759
cond-mat-2003 27519 116181 2290 3659 21570 109974
ba-graph 27621 69794 7077 5816 14728 56900
er-graph 27884 77075 637 1765 25482 74673

Table 4.1: Overview of sizes of the four test graphs

4.3.2 Speed improvement

Table 4.2 contains the average speedup using the improved algorithm, for un-

weighted and weighted variants, in both for real time and CPU time. The standard

34

Chapter 4. Faster exact calculation

deviation on the measured times was very small, so I did not include the ranges.

For all of the graphs, both variants of the improved algorithm calculated the aver-

age path length correctly.

Name Speedup (real) Speedup (user) Weighted (real) Weighted (user)
as-22july06 2.18× 2.21× 8.60× 3.32×
cond-mat-2003 1.17× 1.18× 1.48× 1.42×
ba-graph 1.75× 1.78× 2.97× 2.40×
er-graph 1.01× 1.01× 1.20× 1.18×

Table 4.2: Overview of the speedup on the test graphs. Real time refers to actual
time passed, user time refers to CPU time.

The speedup approximately matches what was expected from the theoretical anal-

ysis of complexities. The user time (the CPU time), shows how much work was

done in all threads compared to the real time since I implemented the algorithms

to work in parallel. This allows us to see both how much work was actually done

and how well the algorithm parallelises. The user time can also be seen as how

much time would be necessary if only one core was available.

On unweighted graphs, we see prettymuch the same decrease in time on both CPU

and real time. This is due to the pair-wise distance calculation and the sum being

already parallelised in the naive algorithm, so the real time improvement is not as

good. To show things in perspective, for example for the as-22july06 graph, on

average, naive average path length calculation took 13 seconds in real time, with 50

seconds on the CPU, that decreased to 6 and 23 with the improved algorithm. The

er-graph has practically no improvement compared to the naive algorithm, this is

due to it having very small 1-core with proportion to its size. The improvement in

cond-mat-2003 was smaller than in the other two graphs because it had a smaller

portion of vertices in the 1-core and a high number of edges overall.

On weighted graphs, the improvement is different. The improvement of CPU time

is already a bit better than on unweighted graphs, but the real time improves sig-

nificantly, thanks to a big portion of the complexity being moved to parallelised

code.

35

Chapter 4. Faster exact calculation

For perspective, for the same graph, as-22july06, the naive average path length

calculation took on average 88 seconds of real time and 89 seconds of CPU time.

This confirms that the algorithm is not parallelised and the weighted pair-wise

distance calculation has much worse time complexity. With the improved algo-

rithm, the time drops to 10 seconds of real time and 26 seconds of CPU time. A

good improvement of the overall work necessary, but an excellent improvement

in parallelisation. The improvement on ba-graph is also very good, and a reason-

able improvement on cond-mat-2003 (228 seconds of real time down to 153 on

average). The er-graph is not scale-free and therefore the improvement there is

minimal.

In conclusion, the improved algorithm does speed up the calculation of APL,

slightly on unweighted graphs and substantially on weighted graphs, with a much

bigger improvement when used on multiple cores. The improved algorithm works

well only on scale-free graphs and the size of the speedup depends on the size of

1-core and 2-chains, also on how much edges were in the graph.

4.3.3 Comparison to other tools

The package graph-tool is, to the extent of my knowledge, one of the fastest

Python packages for analysing graphs, depending on the task it is used for. This is

illustrated by the benchmarks comparison provided by the author of graph-tool

in [23] and by further and more recent analysis by Timothy Lin in [24]. For this

thesis, the most interesting part of the first comparison is a calculation of between-

ness on a slightly larger graph than the test graphs here, betweenness having a

similar complexity involving the topology of the graph. Graph-tool was about five

times faster than igraph [25] and more than 200x times faster than NetworkX [26].

In the second comparison, while networkkit [27] beats graph-tool in detecting

the k-core, but the shortest path length, the most important measure with regards

to this thesis, is several times faster with graph-tool.

Based on this benchmarks I only chose to compare to igraph and networkkit,

NetworkX is a pure Python tool and as such can not beat a C++ implementation.

36

Chapter 4. Faster exact calculation

Only unweighted graphs are supported in the calculation of the average path

length with igraph. The comparison is shown in table 4.3. It shows that

graph-tool uses more of CPU time to do the pair-wise distance calculation, but in

terms of real time it is up to four times faster. This might be partly caused because

igraph uses the triangle sum while my naive implementation does not, but even

so it is faster in real time.

Name graph-tool real graph-tool user igraph real igraph user
as-22july06 12.97s 50.30s 39.60s 39.53s
ba-graph 24.52s 95.77s 69.71s 69.59s
cond-mat-2003 29.66s 115.98s 75.54s 75.40s
er-graph 32.55s 127.42s 78.82s 78.68s

Table 4.3: Comparison of the igraph’s APL algorithm with my naive algorithm
using graph-tool. Times are in seconds and are average of 5 runs.

I could not successfully run the benchmark with networkkit on the same com-

puter as I ran the other benchmarks. It crashed my computer a couple of times

due to running out of memory and swap. This is curious since the average path

length calculation ran without an issue with igraph and graph-tool. The package

does not have a function to calculate the distance directly, so I think this might be

because when retrieving the 2D matrix of distances a copy is returned instead of

a reference, so two times the amount of memory is required. Since Timothy Lin

compared the shortest path length quite recently with his benchmark in [24], I did

not make further effort to get my comparison.

I tried to venture outside of Python, I wanted to comparewith Gephi [28], however,

Gephi also runs several centrality statistics and eccentricity distribution calcula-

tion, so the comparison would be unbalanced. Furthermore, I did not find a way

to measure accurately how long it takes to run these calculations.

4.4 Further usage

The algorithm I devised in this chapter is generalizable to other problems than just

the average path length. With some tweaks, it is, in fact, an algorithm to speed up

any pair-wise distance problem on a graph. This means it could be used to get the

37

Chapter 4. Faster exact calculation

pair-wise distance matrix or for other usages involving distances from all vertices

to all other. The main part that would have to change is the optimisation which

calculates distances from vertices in the 1-core – the sum of the closest vertex is

used as a base, instead one would have to loop over all vertices. This means a

slight increase in complexity (both time and space), but the main improvement is

reducing the complexity of Johnson’s algorithm and that would remain. Similar

principles could be used for example for speeding up betweenness on a graph as

well.

38

Chapter 5

Approximation using sampling

While the algorithm I devised to speed up the calculation of the average path length

(APL)makes improvements in the time complexity, for large graphs (and especially

large temporal graphs) it still might be prohibitively slow. Any real-time applica-

tion might not be usable with the exact value, as it can take hours to do those

calculations. For those and other cases an approximation is required.

For some cases the exact value is not even needed, an accurate and fast approxi-

mation can be enough. For exploratory data analysis, one only needs an overview

of the properties, not exact values. For comparing two graphs an approximation

is enough to see the difference between graphs, the second or third decimal does

not matter. Some graphs are just a sample of the underlying true graphs, and the

exact value in the sampled graph would be just an approximation of the true APL.

In this chapter, I will, therefore, implement an approximation method on top of the

algorithm I devised in the previous chapter. The approximation is based on random

vertex sampling on the whole graph as introduced in “Distance Distribution and

Average Shortest Path Length Estimation in Real-World Networks” by Ye et al. [1].

I devised the same method myself when I ran into trouble with calculating the

average path length on evenmuch larger graphs than those examined in this thesis,

but when doing a literature review for this thesis I found this paper which had

introduced the approximation in 2010.

The approximation works on sampling some vertices as sources and calculating

distances just from sources to all other vertices and averaging the value. Apart

from trying to reproduce the results of that paper I will also try to expand on it

39

Chapter 5. Approximation using sampling

with a couple of modifications in the sampling and will focus more on the number

of sources needed to get an accurate approximation well.

5.1 Analysis

The paper by Ye at al. compares multiple different sampling methods to approxi-

mate the APL. Two are based on sampling either vertices or edges and creating a

subgraph, one is a snowball method iteratively adding neighbours to a subgraph

and the final one is sampling a set of source vertices and calculating distances from

only those source vertices.

Out of these, the last one, the method the authors called random vertex sampling,

works best for approximating the APL. The others have a large bias in over- or

underapproximating the value. The choice was clear, I chose to implement that

method, with some modifications and more experiments.

Since I already implemented an algorithm to speed up the calculation, it only

makes sense to speed up this approximation with it as well. The implementation

is described in the next section, what most matters is the selection of the source

vertices. I eventually came up with three methods with relation to the algorithm

devised in the previous chapter. Let p denote the parameter for the approximation,

which stands for the portion of vertices to be sampled or the sample size as it will

be referenced in the rest of this thesis. The parameter will have slightly different

meanings in the methods.

Both methods Reduced-Proportional (RP) and Reduced-Uniform (RU) sample

⌈p · nr⌉ vertices from the reduced graph (graph after removing of 1-core and 2-

chains). Recall that nr is the number of vertices in that reduced graph. Let’s call

those selected vertices sampled and let S denote the set. What differs in those two

methods is the probability of selecting each vertex, however, duplicates are not

allowed in either.

To calculate the approximation, we have calculate distances on the reduced graph

from these vertices. However thanks to the improved algorithm, we can also count

40

Chapter 5. Approximation using sampling

the vertices in 1-core trees connected to vertices in S and if both closest vertices

are in S also the 2-chain vertices, with just a couple of extra computations. Let’s

call those vertices together with vertices from S counted and let C denote the set.

The approximation then is expressed in equation 5.1.

l̄S =

∑
i∈C, j∈V,i̸= j

di, j

|C| · (|V |−1)
(5.1)

Method Reduced-Proportional (RP) samples vertices from the reduced graph

based on the number of vertices that would be included inC if it were selected. The

motivation behind is to count as many vertices as possible with the least amount

of computation necessary.

The probability of selecting each vertex v is expressed in equation 5.2. The vertex

itself is always counted, and then if a 1-core tree is connected, all vertices from it

can be also counted, as expressed by n1,v. If the graph is weighted, 2-chain vertices

can be counted if the other closest vertex is also in the sampled set, so I multiplied

the count n2,v with a half, to take in account this relation. If the graph is not

weighted, n2,v is zero.

pv ∝ 1+n1,v +0.5n2,v (5.2)

Method Reduced-Uniform (RU) samples vertices from the reduced graph uni-

formly. As will be shown in the sections to come, method RP does not perform

well, introducing a significant bias. Therefore I tried to salvage the method of

sampling on the reduced graph with a uniform sampling, which could remove the

bias.

Method Original-Uniform (OU) samples ⌈p · n⌉ vertices from the original graph

before any reduction with 1-core and 2-chains. The sampling is uniform. In this

case, the sampled set S is identical to the counted set C, but pair-wise distances

on the reduced graph only have to be performed on set D. Set D is a set which

contains the closest vertices instead of vertices that are in the 1-core or 2-chains.

41

Chapter 5. Approximation using sampling

Again, as we will see later, method RU does not perform very well on weighted

graphs – this is basically the original method introduced in the paper by Ye at al.

However with the improved APL algorithm, from a certain number of vertices, the

set D will be smaller than S and the calculation quicker.

5.1.1 Complexity

Recall, that the complexity of the APL calculation with the improved algorithm

is O(nr(nr + mr) + n2
1 + n(nr + 1) + n1) for unweighted graphs, and O(nrmr +

n2
r lognr +n(n−n1+2)+n2

1(2+ logn1)+n2) for weighted graphs using the com-

bined algorithm.

The complexity of the pair-wise distance calculation on the reduced graph is

O(nr(nr + mr)) for unweighted graphs and O(nrmr + n2
r lognr) on weighted

graphs. The complexity of the sum of the distances is the same for both types

of graphs,O(n ·nr +n2
1), just the notation is slightly different for weighted graphs.

The complexities of those two parts are different for the approximation’s complex-

ity.

On unweighted graphs, instead of running nr breadth-first searches (BFSs), only

|S| are needed (|D| for method Original-Uniform (OU)), putting the complexity

at O(|S|(nr + mr)) On weighted graphs, instead of using Johnson’s algorithm,

|S| (or |D|) separate Dijkstra’s algorithms are required, putting the complexity at

O(|S|(mr +nr lognr)).

The sum of distances is modified to O(n · |S|+ n2
1) for both types of graphs, this

time with the same notation. For method OU the S is replaced with D.

One must of course also consider the complexity of the sampling. Since samples

without replacement are required, the easiest solution is to shuffle the options with

the Fisher-Yates shuffle, which has complexity O(n) [29], and then take elements

from the shuffled list until the required count is needed. The complexity is then

O(nr) and O(n) for method OU.

42

Chapter 5. Approximation using sampling

5.2 Implementation

I implemented this approximation in the springbok package I wrote in the previ-

ous chapter.

The modification in the Python part was basic, just adding more arguments to

the function calculating the APL and if those were set, sampling the set of source

vertices. If the method was RU or RP, from the reduced vertices, if the method

was OU from the original vertices. I used numpy [30] for this, its randomisation

functionality. For method OU I then calculated the D set as well.

Then I only calculated the distances to all other vertices from S in the reduced graph

(D with method OU), and passed those distances instead of the full matrix to the

C++ extension, together with these sets. I modified the C++ code for approxima-

tion by only iterating over the appropriate vertices and to change the calculation

of the average path length from the sum with the size of the C instead of V .

Only pair-wise distances on full graph and distances from a single source are im-

plemented in graph-tool, so I implemented another little tool, which can run

multiple single-source searches (BFS or Dijkstra’s) in parallel, as a way to fur-

ther parallelise the process. This means that for approximation the process is fully

parallelisable in the two more time-sensitive parts, the pair-wise distances and the

sum of the distances.

5.3 Experiments

To test the performance of individual methods for sampling the vertices I ran mul-

tiple experiments on both types of graphs and multiple weight distributions.

5.3.1 Test graphs

For testing of the approximation I used the same four graphs I used in the previous

section, the two real-world graphs as-22july06 and cond-mat-2003, and the two

generated, ba-graph and er-graph.

43

Chapter 5. Approximation using sampling

For each of these graphs, I generated three different edge weights to test approx-

imation in weighted graphs. First unit weights, where all weights are 1. Sec-

ond, uniformly distributed weights, where each edge has a weight uniformly se-

lected between 0.001 (to avoid zero weights) and 6. And then, normally distributed

weights, where each edge has a weight sampled from a random distribution with

mean 3 and standard deviation 1. If the values from the normal distribution went

beyond the range of the uniform distribution, I sampled the edge weight again to

keep the range same and to prevent non-positive weights.

In the rest of the chapter when I will reference to unit, normal or uniform weights,

I will be referring to these distributions of the weights.

5.3.2 Experiments design

To test how well the various methods approximate, how they compare and what

sample size is required to get a reasonable approximation, I ran multiple experi-

ments. For each test graph, I ran the approximation multiple times for different

sample sizes p and compared them to the true value calculated using the exact

algorithm from the previous chapter.

I ran experiments with 53 different values of p, chosen on a logarithmic scale, to

see how few samples can provide a good estimate. First nine values on each of the

10−4, 10−3 and 10−2 scales. Then values increment from 0.1 to 0.2 by 0.01, the

remaining values increment by 0.05 from 0.2 up to 0.95. For er-graph I reduced

the number of p to 33, because the calculation for that graph is slower, even with

my improvement (as it is not scale-free).

On unweighted graphs, I ran the experiments 40 times for each graph. On

weighted graphs, since the calculation is slower, I only ran the experiment 20

times, but for three distributions of weights.

The experiments produced a lot of data, which I plotted and patterns can be seen

from them. With the sizes of the test graph, the lowest p produce a set of a few

vertices, meaning even bellow 10. While some methods did produce a result with

44

Chapter 5. Approximation using sampling

a mean close to the true value at the small sample sizes, the extremes were too

large and would distract from patterns of larger sample sizes, so I did not include

them in these plots.

While some conclusions can be drawn from the plots, to have some kind of quan-

titative results I decided to test the methods based on thresholds. Basically, what

p is necessary to get a mean or maximum accuracy error under some threshold t .

I measured the error in percentages, so the values are comparable across graphs.

If l is the true value of the APL and l̄ is its approximation in a experiment, let’s

define error e in equation 5.3.

e =
|l − l̄|

l
·100 (5.3)

Let’s also define maxe to be the maximum error at sample size p in a specific

experiment, mine the minimum error, ē to be the mean error and σe the standard

deviation.

For the thresholds on the mean accuracy error, I chose t to be 5, 1, 0.5 and 0.1, to

mimic the usual confidence levels in statistics. For the thresholds on the maximum

accuracy error, I chose 10, 5 and 1. The unit of t is the same as the unit of e,

percentages.

Together with the approximation value I also noted howmany vertices were in sets

C for methods RU and RP and D for method OU. I did this to see how efficiently

they use the speedup of 1-core and 2-chains reduction.

5.3.3 Experiments results

The full experiment results can be seen plotted in appendix C. Since there is a lot of

combinations of graphs, methods and types of weights, there is a lot of individual

plots, so I am only going to include a couple of them here as examples on the

‘neutral’ scale-free ba-graph. For the rest of the graphs, I will only include the

quantitative results with thresholds.

45

Chapter 5. Approximation using sampling

Figure 5.1 shows the results of experiments on the unweighted ba-graph with the

three methods. After 40 runs of the experiments, we can see that on unweighted

graphs methods RU and OU are unbiased, the mean is very close to the true value

even for very small p. The method RP is slightly biased, producing a value above

the true value of the property. The standard deviation of the RP method is also

larger than for the other two, which seem to have comparable standard deviations.

The extremes of the approximation are also shown in the plots.

10 3 10 2 10 1 100

Sample size

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

5.3

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(a)Method RP

10 3 10 2 10 1 100

Sample size

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

5.3

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(b) Method RU

10 3 10 2 10 1 100

Sample size

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

5.3

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(c)Method OU

Figure 5.1: Approximation results on the unweighted ba-graph. Note the
logarithmic scale on the X-axis.

Figure 5.2 shows the results of experiments on the ba-graphwith unit weights. Af-

ter 20 runs, the differences between the methods are more apparent here than in

the unweighted variants. There is now a bias in both methods RU and RP, usually

under approximating the value, but in RP for high values of p, it is also overap-

proximating the value. Method OU remains unbiased and its standard deviation

and extremes are better compared to the other methods.

With other weight distributions for this graph and the three other graphs, the

overall trend is very similar. For some graphs and some weights the direction and

size of the bias are different with methods RP and RU, but the method OU is always

unbiased. This can be seen in the figures in appendix C.

5.3.3.1 Quantitative threshold results

From the plots in the previous section, we can already see that method OU per-

forms the best both on unweighted and weighted graphs. So here in this section, I

46

Chapter 5. Approximation using sampling

10 3 10 2 10 1 100

Sample size

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

Ap
pr

ox
im

at
io

n
True value
Mean
Max
Min
SD

(a)Method RP

10 3 10 2 10 1 100

Sample size

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(b) Method RU

10 3 10 2 10 1 100

Sample size

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(c)Method OU

Figure 5.2: Approximation results on the weighted ba-graph with unit weights

will only include its threshold results, but the results for all methods are included

in the appendix D. Furthermore, as can be seen from the results in appendix D,

the thresholds for unit weights are practically identical to unweighted graphs, so

I omitted those results from this section as well. That is because the distances are

the same and method OU is not dependent on the effect of the reduction.

Table 5.1 shows the threshold results on mean error for method OU on unweighted

graphs and weighted graphs with normal and uniform weights. On unweighted

graphs, we can see that the 5% threshold can be reached with p on the 10−4 scale

and then each further threshold is reached with an increase of an order of mag-

nitude of p. The er-graph is an exception to that, about an order of magnitude

smaller p is required for the thresholds.

On normally distributed weights, the performance of the approximation drops in

all graphs, but not significantly for most thresholds. The only threshold where the

increase is significant is 0.1%, where it raises the sample size up to 0.5, half of the

whole graph has to be used as a source.

On uniformly distributed weights the performance drops again compared to nor-

mal weights. For thresholds higher than or equal to 0.5% the approximation is still

a viable option that will make the calculation quicker, but for 0.1% p raises up to

0.85, practically using the whole graph.

47

Chapter 5. Approximation using sampling

Graph t UW p UW ē WN p WN ē WU p WU ē
as-22july06 5% 0.0004 3.521% 0.0004 3.507% 0.002 4.351%
as-22july06 1% 0.007 0.912% 0.008 0.783% 0.04 0.863%
as-22july06 0.5% 0.02 0.438% 0.04 0.385% 0.14 0.423%
as-22july06 0.1% 0.35 0.086% 0.5 0.094% 0.85 0.061%
cond-mat-2003 5% 0.0002 3.837% 0.0002 4.275% 0.0008 4.763%
cond-mat-2003 1% 0.005 0.875% 0.008 0.873% 0.03 0.977%
cond-mat-2003 0.5% 0.02 0.452% 0.03 0.480% 0.13 0.377%
cond-mat-2003 0.1% 0.3 0.098% 0.5 0.059% 0.75 0.079%
ba-graph 5% 0.0002 4.027% 0.0003 4.132% 0.0008 4.463%
ba-graph 1% 0.005 0.860% 0.006 0.999% 0.03 0.840%
ba-graph 0.5% 0.02 0.408% 0.02 0.382% 0.08 0.474%
ba-graph 0.1% 0.3 0.092% 0.35 0.090% 0.75 0.075%
er-graph 5% 0.0001 2.526% 0.0001 4.957% 0.0003 2.330%
er-graph 1% 0.0006 0.824% 0.001 0.897% 0.006 0.506%
er-graph 0.5% 0.004 0.303% 0.004 0.468% 0.01 0.471%
er-graph 0.1% 0.07 0.093% 0.13 0.078% 0.3 0.088%

Table 5.1: Threshold results with method OU on unweighted graphs (UW),
weighted graphs with normal weights (WN) and uniform weights (WU)

Table 5.1 shows the threshold results on the maximum error. We can again see

a general rule that each threshold is reached with an increase in the magnitude

of p and that maximum 1% error is reached with p on the 10−2 scale, single per-

centages of the graph used as sources. As in the mean error, the approximation is

not as performant on the uniformly distributed weights, requiring almost an order

of magnitude larger p than other weight distributions, however, p = 0.2 still al-

ways results in an error less than 1%. I will try to explore why the approximation

performs worse on uniform weights in section 5.4.2.

5.3.3.2 Numbers of vertices sampled or counted

As mentioned in the section about the design of experiments, I was also tracking

how many vertices were sampled, counted with methods RU and RP and for how

many vertices the distances had to be calculated in method OU.

Figure 5.3 contains the results on unweighted graphs, averages of 40 runs. The

size of C for method RU is almost identical to the size of S for method OU, so it

48

Chapter 5. Approximation using sampling

Graph t UW p UW maxe WN p WN maxe WU p WU maxe
as-22july06 10% 0.0009 6.580% 0.0006 8.075% 0.002 9.626%
as-22july06 5% 0.003 2.676% 0.005 3.460% 0.01 3.514%
as-22july06 1% 0.05 0.985% 0.07 0.980% 0.2 0.855%
cond-mat-2003 10% 0.0004 7.634% 0.0009 9.298% 0.003 8.227%
cond-mat-2003 5% 0.002 4.301% 0.003 3.223% 0.008 2.911%
cond-mat-2003 1% 0.07 0.834% 0.09 0.640% 0.2 0.662%
ba-graph 10% 0.0007 7.605% 0.0004 9.133% 0.002 8.539%
ba-graph 5% 0.002 4.756% 0.002 3.423% 0.005 4.825%
ba-graph 1% 0.03 0.989% 0.03 0.782% 0.14 0.777%
er-graph 10% 0.0001 8.242% 0.0003 5.363% 0.0003 7.172%
er-graph 5% 0.0003 4.921% 0.0004 3.580% 0.003 3.106%
er-graph 1% 0.006 0.985% 0.03 0.376% 0.03 0.790%

Table 5.2: Threshold results with method OU on unweighted graphs (UW),
weighted graphs with normal weights (WN) and uniform weights (WU)

is practically invisible. The key finding is that the size of D in method OU grows

similarly to the size of S in the other methods, so time-wise they should perform

similarly, as the same number of distances need to be calculated for all methods.

For each graph we can also see how many of the vertices are in the 1-core or 2-

chains in the differences between the size of S and C for methods RU and RP. For

example, er-graph is not scale-free and therefore the difference is small.

Figure 5.4 contains the results onweighted graphs, combined for all distributions of

weights. Here the differences betweenmethods are evenmore apparent, especially

on as-22july06. The 1-core and 2-chains vertices are a big part of that graph,

which results in a very quick increase of counted vertices in method RP, as a few

vertices can provide results for many vertices. The difference in the size of D in OU

and S in RU/RP is larger on weighted graphs, but not as significant to be worried

about, especially since it provides such a stronger approximation.

5.3.4 Speed of the approximation

Figure 5.5 contains how much faster is the approximation to calculating the full

exact value, for all test graphs andmethod. The comparison is comparing 10 runs of

the approximation at each graph and method to the mean time from section 4.3.2.

49

Chapter 5. Approximation using sampling

0.0 0.2 0.4 0.6 0.8
Sample size

0

5000

10000

15000

20000
Nu

m
be

r o
f v

er
tic

es

|S| with RU and RP
|C| with RU
|C| with RP
|S| and |C| with OU
|D| with OU

(a) For graph as-22july06

0.0 0.2 0.4 0.6 0.8
Sample size

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f v
er

tic
es

|S| with RU and RP
|C| with RU
|C| with RP
|S| and |C| with OU
|D| with OU

(b) For graph cond-mat-2003

0.0 0.2 0.4 0.6 0.8
Sample size

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f v
er

tic
es

|S| with RU and RP
|C| with RU
|C| with RP
|S| and |C| with OU
|D| with OU

(c) For graph ba-graph

0.0 0.2 0.4 0.6 0.8
Sample size

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f v
er

tic
es

|S| with RU and RP
|C| with RU
|C| with RP
|S| and |C| with OU
|D| with OU

(d) For graph er-graph

Figure 5.3: Number of vertices counted and sampled for the three methods with
respect to the sample size on unweighted graphs

0.0 0.2 0.4 0.6 0.8
Sample size

0

5000

10000

15000

20000

Nu
m

be
r o

f v
er

tic
es

|S| with RU and RP
|C| with RU
|C| with RP
|S| and |C| with OU
|D| with OU

(a) For graph as-22july06

0.0 0.2 0.4 0.6 0.8
Sample size

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f v
er

tic
es

|S| with RU and RP
|C| with RU
|C| with RP
|S| and |C| with OU
|D| with OU

(b) For graph cond-mat-2003

0.0 0.2 0.4 0.6 0.8
Sample size

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f v
er

tic
es

|S| with RU and RP
|C| with RU
|C| with RP
|S| and |C| with OU
|D| with OU

(c) For graph ba-graph

0.0 0.2 0.4 0.6 0.8
Sample size

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f v
er

tic
es

|S| with RU and RP
|C| with RU
|C| with RP
|S| and |C| with OU
|D| with OU

(d) For graph er-graph

Figure 5.4: Number of vertices counted and sampled for the three methods with
respect to the sample size on weighted graphs

50

Chapter 5. Approximation using sampling

The main takeaway is that the speed of all the three methods is comparable.

Method OU is a little bit slower than the other methods, that is due to D grow-

ing faster with p than S in the other methods.

There is a interesting uptick in the real time improvement around p = 10−2. This

is due to the implementation of parallelisation using OpemMP, there is some over-

head involved with it, and therefore it is only used from a certain threshold in the

number of vertices, that threshold being 300 (default in graph-tool). That makes

the code run faster in the real time from that point forward.

10 3 10 2 10 1 100

p

0

10

20

30

40

50

60

70

Ti
m

es
 fa

st
er

Real RU
User RU
Real RP
User RP
Real OU
User OU

(a) For graph as-22july06

10 3 10 2 10 1 100

p

0

20

40

60

80

100

120

Ti
m

es
 fa

st
er

Real RU
User RU
Real RP
User RP
Real OU
User OU

(b) For graph cond-mat-2003

10 3 10 2 10 1 100

p

0

20

40

60

80

100

120

Ti
m

es
 fa

st
er

Real RU
User RU
Real RP
User RP
Real OU
User OU

(c) For graph ba-graph

10 3 10 2 10 1 100

p

0

100

200

300

400

500

600

Ti
m

es
 fa

st
er

Real RU
User RU
Real RP
User RP
Real OU
User OU

(d) For graph er-graph

Figure 5.5: Comparison of time needed to calculate an approximation compared
to calculating the exact value on unweighted graphs

Figure 5.6 contains the results for weighted graphs. The patterns are similar to

that of unweighted graphs, just on a bigger magnitude. Calculating the APL on

weighted graphs is slower in general, so the differences will be bigger.

One main difference is that real time has a much bigger improvement on weighted

graphs compared to unweighted. That is due to the original exact algorithm is

51

Chapter 5. Approximation using sampling

running Johnson’s algorithm, which is not parallelisable, but this approximation

is using parallel Dijkstra’s algorithms, which uses the computer more efficiently.

10 3 10 2 10 1 100

p

0

20

40

60

80

Ti
m

es
 fa

st
er

Real RU
User RU
Real RP
User RP
Real OU
User OU

(a) For graph as-22july06

10 3 10 2 10 1 100

p

0

100

200

300

400

Ti
m

es
 fa

st
er

Real RU
User RU
Real RP
User RP
Real OU
User OU

(b) For graph cond-mat-2003

10 3 10 2 10 1 100

p

0

50

100

150

200

Ti
m

es
 fa

st
er

Real RU
User RU
Real RP
User RP
Real OU
User OU

(c) For graph ba-graph

10 3 10 2 10 1 100

p

0

200

400

600

800
Ti

m
es

 fa
st

er
Real RU
User RU
Real RP
User RP
Real OU
User OU

(d) For graph er-graph

Figure 5.6: Comparison of time needed to calculate an approximation compared
to calculating the exact value on weighted graphs

5.4 Interpretation of results

In previous sections I already concluded that method OU is the best for approxi-

mating the APL – it is unbiased and its accuracy improves quickly with growing

sample size on all graphs with all weight distributions. Method RU also shows

these properties, but only on unweighted graphs.

Now since the method selection is clear, the selection of p. That selection, of

course, depends on what the priorities are and there are trade-offs involved. Se-

lecting a smaller p means a less accurate approximation but a faster calculation.

Higher p provides a more accurate approximation at the cost of more time. The

tables in section 5.3.3.1 and figures in section 5.3.4 can help with this trade-off.

52

Chapter 5. Approximation using sampling

To show more of a unified comparison, I put together some overview tables with

the full accuracy statistics (mean, standard deviation, minimum and maximum)

and the time improvement against the calculation of the exact value. The ta-

bles 5.3, 5.4 and 5.5 show the results for three specific p values – 0.006, 0.06 and 0.3.

Each table contains results for one type of weights – no weights, normal weights

and uniform weights, unit weights are omitted as the results are similar to no

weights at all.

One thing of note is that the improvement against the calculation of the exact value

is using the results of the improved algorithm, meaning that if one would compare

to the naive algorithm, the improvement would be multiplied by the results in

section 4.3.2. We can also see the improvement is not linear with respect to p,

that is of course because the complexity of the calculation is not linear and there

are some computations which must be done regardless of p – the reduction of the

graph.

Graph p ē σe mine maxe Faster (real) Faster (user)
as-22july06 0.006 1.023% 0.897% 0.015% 3.497% 22.05× 54.92×
as-22july06 0.06 0.292% 0.230% 0.018% 0.885% 10.56× 12.78×
as-22july06 0.3 0.119% 0.091% 0.014% 0.342% 3.29× 3.43×
cond-mat-2003 0.006 0.786% 0.569% 0.004% 2.134% 36.02× 87.66×
cond-mat-2003 0.06 0.261% 0.211% 0.001% 1.102% 11.95× 12.48×
cond-mat-2003 0.3 0.098% 0.061% 0.006% 0.258% 2.71× 2.73×
ba-graph 0.006 0.738% 0.586% 0.016% 2.289% 21.98× 80.22×
ba-graph 0.06 0.184% 0.146% 0.008% 0.543% 9.12× 10.85×
ba-graph 0.3 0.092% 0.064% 0.000% 0.239% 2.38× 2.47×
er-graph 0.006 0.311% 0.228% 0.007% 0.985% 52.22× 194.35×
er-graph 0.06 0.104% 0.075% 0.013% 0.289% 14.16× 14.57×
er-graph 0.3 0.031% 0.028% 0.002% 0.129% 2.93× 2.96×

Table 5.3: Accuracy and speed of approximation for specific sample sizes for
unweighted graphs. Time is compared to the calculation of the exact value.

5.4.1 Differences between methods

The differences between methods come from how the graph is reduced by remov-

ing the 1-core and 2-chains and how they are counted in the approximation. As

it turns out, when sampling on the reduced graph and counting the extra vertices

53

Chapter 5. Approximation using sampling

Graph p ē σe mine maxe Faster (real) Faster (user)
as-22july06 0.006 1.366% 0.952% 0.168% 3.212% 35.97× 62.65×
as-22july06 0.06 0.474% 0.341% 0.090% 1.326% 17.96× 14.95×
as-22july06 0.3 0.132% 0.102% 0.003% 0.383% 5.00× 3.55×
cond-mat-2003 0.006 0.999% 0.703% 0.073% 2.667% 209.49× 139.16×
cond-mat-2003 0.06 0.450% 0.304% 0.058% 1.204% 72.57× 20.33×
cond-mat-2003 0.3 0.131% 0.112% 0.000% 0.374% 16.46× 4.45×
ba-graph 0.006 0.999% 0.571% 0.107% 2.103% 99.97× 117.96×
ba-graph 0.06 0.283% 0.193% 0.034% 0.850% 41.32× 15.91×
ba-graph 0.3 0.103% 0.102% 0.001% 0.382% 10.75× 3.61×
er-graph 0.006 0.387% 0.280% 0.075% 0.986% 277.60× 270.33×
er-graph 0.06 0.111% 0.089% 0.001% 0.321% 79.05× 21.25×
er-graph 0.3 0.043% 0.034% 0.003% 0.121% 16.35× 4.32×

Table 5.4: Accuracy and speed of approximation for specific sample sizes for
graphs with normal weights. Time is compared to the calculation of the exact

value.

Graph p ē σe mine maxe
as-22july06 0.006 2.279% 1.226% 0.231% 4.399%
as-22july06 0.06 0.869% 0.674% 0.074% 2.063%
as-22july06 0.3 0.186% 0.145% 0.022% 0.646%
cond-mat-2003 0.006 2.372% 1.451% 0.545% 6.171%
cond-mat-2003 0.06 0.510% 0.353% 0.048% 1.354%
cond-mat-2003 0.3 0.195% 0.129% 0.014% 0.430%
ba-graph 0.006 1.417% 1.223% 0.084% 3.800%
ba-graph 0.06 0.536% 0.364% 0.003% 1.287%
ba-graph 0.3 0.248% 0.176% 0.006% 0.639%
er-graph 0.006 0.506% 0.486% 0.006% 1.806%
er-graph 0.06 0.342% 0.183% 0.009% 0.711%
er-graph 0.3 0.088% 0.087% 0.010% 0.362%

Table 5.5: Accuracy and speed of approximation for specific sample sizes for
graphs with uniform weights. Faster columns omitted here to prevent duplicity.

54

Chapter 5. Approximation using sampling

automatically, a bias is introduced. If there are many 1-core vertices in the graph,

the paths from those vertices to all other vertices are slightly longer on average,

resulting in an over-approximation. The paths from 2-chain vertices are on the

other hand shorter than average, resulting in under-approximation.

Method RP suffers from this even further, because vertices which introduce the

bias are selected with a higher probability. The original hypothesis was to count

asmany vertices as possible with as little computation needed, but from the results,

we can see that the result is biased and the difference in speed is not that great to

be concerned with.

5.4.2 Differences between weight distributions

Comparing weighted and unweighted graphs, it is not surprising that the results

for unweighted graphs and unit weights are practically the same, they do have the

same distance distribution, and the sampling on the original graph removes any

differences in how the value is calculated. The distribution of the weights seems

to differ, the required p is bigger for uniform weights than for normal weights.

In figure 5.7 I plotted the distribution of all the paths within each graph with the

weights I generated.

The obvious difference between the uniform and normal weights is that the dis-

tances are shifted slightly, which makes the resulting APL different. But I do not

think that is the main reason behind the worse performance of the approximation

on uniformweights. I took a look at the standard deviation and the excess kurtosis

of the distributions, shown in tables 5.6 and 5.7.

The standard deviation for unweighted graphs is very small, which is maybe one

of the contributing factors why the approximation of unweighted graphs is easier

– a smaller p is required. The differences in the standard deviation between the

two weight distributions go both ways, there are no consistent differences.

But in excess kurtosis, the difference is consistent across the scale-free graphs –

normal weights have a higher kurtosis compared to unweighted graphs and uni-

form weights have a higher kurtosis compared to normal. The absolute values do

55

Chapter 5. Approximation using sampling

not matter, only the comparison between types of weights. Higher excess kur-

tosis means more outlier values, meaning that from the data we see for uniform

weights have more outliers and it is, therefore, harder to approximate the mean,

because the outliers affect it. Again, er-graph is an exception, the p does not in-

crease dramatically for uniform weights and here we see that the kurtosis is not

too different.

I am not saying that is the definite reason, but it is sort of an educated guess. To

actually confirm that more experiments would be required, first of all, generating

multiple edge weights in the same distribution, to see how much the result differs

if it is not just the result of these specific weights. Then I think it would be wise to

also test with different parameters of the distributions, to see how much the select

ones matter.

0 5 10 15 20 25 30 35
Distance

0.0

0.5

1.0

1.5

2.0

Nu
m

be
r o

f p
at

hs

1e8
Unweighted
Normal weights
Uniform weights

(a) For graph as-22july06

0 10 20 30 40 50
Distance

0.0

0.5

1.0

1.5

2.0

Nu
m

be
r o

f p
at

hs

1e8
Unweighted
Normal weights
Uniform weights

(b) For graph cond-mat-2003

0 10 20 30 40
Distance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f p
at

hs

1e8
Unweighted
Normal weights
Uniform weights

(c) For graph ba-graph

0 5 10 15 20 25 30 35
Distance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nu
m

be
r o

f p
at

hs

1e8
Unweighted
Normal weights
Uniform weights

(d) For graph er-graph

Figure 5.7: Distance distributions of the four test graphs

56

Chapter 5. Approximation using sampling

Graph Unweighted Normal weights Uniform weights
as-22july06 0.802 7.014 8.430
cond-mat-2003 1.757 14.369 11.696
ba-graph 0.989 8.747 9.925
er-graph 0.860 6.594 5.895

Table 5.6: Standard deviation of the distance distributions

Graph Unweighted Normal weights Uniform weights
as-22july06 0.248 0.422 0.533
cond-mat-2003 0.472 0.690 1.322
ba-graph 0.482 0.788 0.851
er-graph 0.993 1.018 0.834

Table 5.7: Excess kurtosis of the distance distributions

57

Chapter 6

Conclusion

This thesis set out two goals – to speed up the exact calculation of the average path

length (APL) and then use that algorithm to provide an even quicker and accurate

approximation. I think I succeeded in both.

I used two tricks to speed up the calculation, both based on reducing the number

of vertices and edges in the most expensive part of the calculation, the pair-wise

distance calculation within a graph, and calculating the distances to those vertices

in alternative ways. The first trick which works on all graphs is removing the 1-

core from the graph – the path from a vertex in a 1-core always goes through one

specific vertex and the distance from that vertex can be used. The second trick

only works on weighted graphs is removing vertices which have a degree two –

the paths from those vertices always go through either one or the other connected

vertex.

Both of these tricks reduce the size of the graph for the expensive pair-wise dis-

tance calculation significantly mainly on scale-free graphs, which is the class of

most real-world graphs. These graphs follow a power-law degree distribution,

meaning there is a high portion of vertices in the graph which have a very low

degree. The improved algorithm has both a better computational complexity and

better space complexity.

After implementing the algorithm in C++ with Python bindings I tested the al-

gorithm on four large graphs, a graph of Autonomous Systems (AS), a citation

network, a Barabási-Albert (BA) and Erdős-Rényi (ER) random graphs, ranging in

size from 22k to 30k vertices. When comparing the time needed to calculate the

APL I found that the improved algorithm sped up the calculation up to 2.2 times,

58

Chapter 6. Conclusion

with the specific time depending on the size of the 1-core and the overall number

of vertices and edges in the graph.

When considering weighted graphs, the improved algorithm sped up the calcula-

tion up to 8.6 times when real time was measured and 3.3 times when CPU time

was measured. Apart from reducing the size of a graph for pair-wise distance

calculation my improved algorithm also enables more of parallelisation.

The algorithm I devised can be generalised to be applied to any pair-wise distance

problem, but in this thesis, it does focus on the average path length. It can be used

to speed up the creation of the 2D distance matrix for graphs and therefore all

problems that depend on it. It could even be used for example for calculation of

betweenness, where the number of paths is important as well, with some modi-

fications. The core principle is that the paths from some vertices are trivial with

respect to some other vertex and the whole graph does not have to be explored to

have the same information.

In the second part of the thesis, I implemented an approximation on top of the

improved algorithm. The approximation selects several vertices and only counts

distances from those vertices instead from all. This method was already published

in 2010 and I mostly experimented with new methods of selecting the vertices,

with relation to the improved algorithm. I was hoping that one of the methods I

would propose would do better, but they introduced a bias to the approximation

instead. So while the idea behind the method remains unchanged in this thesis

I further sped it up with my improved APL algorithm, which improves both the

computational complexity and space complexity.

I used the same graphs and generated multiple weights distributions and did more

analysis on the sample sizes and resulting accuracy and I measured how much

quicker it is compared to the calculation of the exact value. The speedup and

accuracy of the method are satisfactory, even with very small sample sizes the

maximum error rarely exceeds 5% and it is multiple times to hundreds of times

faster. The speed and the resulting accuracy, of course, form a trade-off, the big-

59

Chapter 6. Conclusion

ger the sample size the more accurate the approximation is while taking more time

to calculate.

To summarise my contributions, I devised and implemented a faster exact cal-

culation of the average path length on scale-free graphs with moderate to good

improvements in speed. Then I reproduced results of a paper on approximations

of the average path length using sampling, improved its speed, experimented with

more methods of the sampling, and mainly experimented with more different sam-

pling sizes and measured both the accuracy and time improvement, to provide a

trade-off based on priorities placed on the approximation.

60

Appendix A

Bibliography

[1] Qi Ye, Bin Wu, and Bai Wang. “Distance distribution and average shortest

path length estimation in real-world networks”. In: International Conference

on Advanced Data Mining and Applications. Springer. 2010, pp. 322–333.

[2] Guoyong Mao and Ning Zhang. “Fast approximation of average shortest

path length of directed BA networks”. In: Physica A: Statistical Mechanics

and its Applications 466 (2017), pp. 243–248.

[3] Michalis Potamias et al. “Fast shortest path distance estimation in large net-

works”. In: Proceedings of the 18th ACM conference on Information and knowl-

edge management. ACM. 2009, pp. 867–876.

[4] Andrey Gubichev et al. “Fast and accurate estimation of shortest paths in

large graphs”. In: Proceedings of the 19th ACM international conference on

Information and knowledge management. ACM. 2010, pp. 499–508.

[5] Frank Takes and Walter Kosters. “Computing the eccentricity distribution

of large graphs”. In: Algorithms 6.1 (2013), pp. 100–118.

[6] Christopher R Palmer, Phillip B Gibbons, and Christos Faloutsos. “ANF: A

fast and scalable tool for data mining in massive graphs”. In: Proceedings of

the eighth ACM SIGKDD international conference on Knowledge discovery and

data mining. ACM. 2002, pp. 81–90.

[7] Paolo Boldi, Marco Rosa, and Sebastiano Vigna. “HyperANF: Approximat-

ing the neighbourhood function of very large graphs on a budget”. In: Pro-

ceedings of the 20th international conference on World wide web. ACM. 2011,

pp. 625–634.

61

Appendix A. Bibliography

[8] Albert-László Barabási and Réka Albert. “Emergence of scaling in random

networks”. In: science 286.5439 (1999), pp. 509–512.

[9] Donald B Johnson. “Efficient algorithms for shortest paths in sparse net-

works”. In: Journal of the ACM (JACM) 24.1 (1977), pp. 1–13.

[10] Robert W Floyd. “Algorithm 97: shortest path”. In: Communications of the

ACM 5.6 (1962), p. 345.

[11] Matthias Scholz. “Node similarity as a basic principle behind connectivity

in complex networks”. In: arXiv preprint arXiv:1010.0803 (2010).

[12] Edward F Moore. “The shortest path through a maze”. In: Proc. Int. Symp.

Switching Theory, 1959. 1959, pp. 285–292.

[13] Stephen B Seidman. “Network structure and minimum degree”. In: Social

networks 5.3 (1983), pp. 269–287.

[14] Vladimir Batagelj and Matjaž Zaveršnik. “Fast algorithms for determining

(generalized) core groups in social networks”. In: Advances in Data Analysis

and Classification 5.2 (2011), pp. 129–145.

[15] Ling Liu and Raúl J Mondragón. “Conservation of alternative paths as a

method to simplify large networks”. In: Proceedings of the 1st Annual Work-

shop on Simplifying Complex Network for Practitioners. ACM. 2009, p. 1.

[16] Tiago P. Peixoto. “The graph-tool python library”. In: figshare (2014). doi:

10.6084/m9.figshare.1164194. url: http://figshare.com/articles/

graph_tool/1164194 (visited on 09/10/2014).

[17] Jeremy Siek, Andrew Lumsdaine, and Lie-Quan Lee.The boost graph library:

user guide and reference manual. Addison-Wesley, 2002.

[18] Leonardo Dagum and RameshMenon. “OpenMP: An industry-standard API

for shared-memory programming”. In: Computing in Science & Engineering

1 (1998), pp. 46–55.

[19] Open Source Initiative. The MIT License (MIT). url: https://opensource.

org/licenses/MIT (visited on 08/31/2019).

62

https://doi.org/10.6084/m9.figshare.1164194
http://figshare.com/articles/graph_tool/1164194
http://figshare.com/articles/graph_tool/1164194
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT

Appendix A. Bibliography

[20] Mark EJ Newman. Network data. url: http://www-personal.umich.edu/

~mejn/netdata/ (visited on 07/30/2019).

[21] Mark EJ Newman. “The structure of scientific collaboration networks”. In:

Proceedings of the national academy of sciences 98.2 (2001), pp. 404–409.

[22] Paul Erdős and Alfréd Rényi. “On RandomGraphs I”. In: Publicationes Math-

ematicae Debrecen 6 (1959), pp. 290–297.

[23] Tiago de Paula Peixoto. Performance Comparison - graph-tool: Efficent net-

work analysis with python. url: https : / / graph - tool . skewed . de /

performance (visited on 07/31/2019).

[24] Timothy Lin. Benchmark of popular graph/network packages. url: https:

//www.timlrx.com/2019/05/05/benchmark-of-popular-graph-network-

packages/ (visited on 08/20/2019).

[25] Gabor Csardi and Tamas Nepusz. “The igraph software package for complex

network research”. In: InterJournal Complex Systems (2006), p. 1695. url:

http://igraph.org (visited on 07/31/2019).

[26] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network struc-

ture, dynamics, and function using NetworkX. Tech. rep. Los Alamos National

Lab.(LANL), Los Alamos, NM (United States), 2008.

[27] Christian L Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. “Net-

worKit: A tool suite for large-scale complex network analysis”. In: Network

Science 4.4 (2016), pp. 508–530.

[28] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An Open

Source Software for Exploring and Manipulating Networks. 2009. url: http:

//www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154.

[29] Richard Durstenfeld. “Algorithm 235: random permutation”. In: Communi-

cations of the ACM 7.7 (1964), p. 420.

63

http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
https://graph-tool.skewed.de/performance
https://graph-tool.skewed.de/performance
https://www.timlrx.com/2019/05/05/benchmark-of-popular-graph-network-packages/
https://www.timlrx.com/2019/05/05/benchmark-of-popular-graph-network-packages/
https://www.timlrx.com/2019/05/05/benchmark-of-popular-graph-network-packages/
http://igraph.org
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

Appendix A. Bibliography

[30] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. “The NumPy

array: a structure for efficient numerical computation”. In: Computing in

Science & Engineering 13.2 (2011), p. 22.

64

Appendix B

Acronyms

APL Average Path Length

AS Autonomous System

BA Barabási-Albert

BFS Breadth-First Search

ER Erdős-Rényi

GRN Global Reachable Nodes

LCC Largest Connected Component

LWCC Largest Weakly Connected Component

OU Original-Uniform

RP Reduced-Proportional

RU Reduced-Uniform

65

Appendix C

Approximation experiments results

See next pages.

66

Appendix C. Approximation experiments results

10 3 10 2 10 1 100

Sample size

3.6

3.8

4.0

4.2

4.4

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(a) as-22july06: Method RP

10 3 10 2 10 1 100

Sample size

3.6

3.8

4.0

4.2

4.4

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(b) as-22july06: Method RU

10 3 10 2 10 1 100

Sample size

3.6

3.8

4.0

4.2

4.4

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(c) as-22july06: Method OU

10 3 10 2 10 1 100

Sample size

5.4

5.6

5.8

6.0

6.2

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(d) cond-mat-2003: Method
RP

10 3 10 2 10 1 100

Sample size

5.4

5.6

5.8

6.0

6.2

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(e) cond-mat-2003: Method
RU

10 3 10 2 10 1 100

Sample size

5.4

5.6

5.8

6.0

6.2

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(f) cond-mat-2003: Method
OU

10 3 10 2 10 1 100

Sample size

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

5.3

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(g) ba-graph: Method RP

10 3 10 2 10 1 100

Sample size

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

5.3

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(h) ba-graph: Method RU

10 3 10 2 10 1 100

Sample size

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

5.3

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(i) ba-graph: Method OU

10 3 10 2 10 1 100

Sample size

6.00

6.05

6.10

6.15

6.20

6.25

6.30

6.35

6.40

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(j) er-graph: Method RP

10 3 10 2 10 1 100

Sample size

6.00

6.05

6.10

6.15

6.20

6.25

6.30

6.35

6.40

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(k) er-graph: Method RU

10 3 10 2 10 1 100

Sample size

6.00

6.05

6.10

6.15

6.20

6.25

6.30

6.35

6.40

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(l) er-graph: Method OU

Figure C.1: Results of approximation experiments on the test graphs without
weights using the three described methods. Average of 40 runs. Note the

logarithmic scale on the X-axis.
67

Appendix C. Approximation experiments results

10 3 10 2 10 1 100

Sample size

3.4

3.6

3.8

4.0

4.2

4.4
Ap

pr
ox

im
at

io
n

True value
Mean
Max
Min
SD

(a) as-22july06: Method RP

10 3 10 2 10 1 100

Sample size

3.4

3.6

3.8

4.0

4.2

4.4

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(b) as-22july06: Method RU

10 3 10 2 10 1 100

Sample size

3.4

3.6

3.8

4.0

4.2

4.4

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(c) as-22july06: Method OU

10 3 10 2 10 1 100

Sample size

5.4

5.6

5.8

6.0

6.2

6.4

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(d) cond-mat-2003: Method
RP

10 3 10 2 10 1 100

Sample size

5.4

5.6

5.8

6.0

6.2

6.4

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(e) cond-mat-2003: Method
RU

10 3 10 2 10 1 100

Sample size

5.4

5.6

5.8

6.0

6.2

6.4

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(f) cond-mat-2003: Method
OU

10 3 10 2 10 1 100

Sample size

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(g) ba-graph: Method RP

10 3 10 2 10 1 100

Sample size

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(h) ba-graph: Method RU

10 3 10 2 10 1 100

Sample size

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(i) ba-graph: Method OU

10 3 10 2 10 1 100

Sample size

6.05

6.10

6.15

6.20

6.25

6.30

6.35

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(j) er-graph: Method RP

10 3 10 2 10 1 100

Sample size

6.05

6.10

6.15

6.20

6.25

6.30

6.35

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(k) er-graph: Method RU

10 3 10 2 10 1 100

Sample size

6.05

6.10

6.15

6.20

6.25

6.30

6.35

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(l) er-graph: Method OU

Figure C.2: Results of approximation experiments on the test graphs with unit
weights using the three described methods. Average of 40 runs. Note the

logarithmic scale on the X-axis.
68

Appendix C. Approximation experiments results

10 3 10 2 10 1 100

Sample size

8

9

10

11

12
Ap

pr
ox

im
at

io
n

True value
Mean
Max
Min
SD

(a) as-22july06: Method RP

10 3 10 2 10 1 100

Sample size

8

9

10

11

12

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(b) as-22july06: Method RU

10 3 10 2 10 1 100

Sample size

8

9

10

11

12

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(c) as-22july06: Method OU

10 3 10 2 10 1 100

Sample size

13.0

13.5

14.0

14.5

15.0

15.5

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(d) cond-mat-2003: Method
RP

10 3 10 2 10 1 100

Sample size

13.0

13.5

14.0

14.5

15.0

15.5

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(e) cond-mat-2003: Method
RU

10 3 10 2 10 1 100

Sample size

13.0

13.5

14.0

14.5

15.0

15.5

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(f) cond-mat-2003: Method
OU

10 3 10 2 10 1 100

Sample size

11.5

12.0

12.5

13.0

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(g) ba-graph: Method RP

10 3 10 2 10 1 100

Sample size

11.5

12.0

12.5

13.0

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(h) ba-graph: Method RU

10 3 10 2 10 1 100

Sample size

11.5

12.0

12.5

13.0

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(i) ba-graph: Method OU

10 3 10 2 10 1 100

Sample size

16.0

16.2

16.4

16.6

16.8

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(j) er-graph: Method RP

10 3 10 2 10 1 100

Sample size

16.0

16.2

16.4

16.6

16.8

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(k) er-graph: Method RU

10 3 10 2 10 1 100

Sample size

16.0

16.2

16.4

16.6

16.8

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(l) er-graph: Method OU

Figure C.3: Results of approximation experiments on the test graphs with
normal distributed weights using the three described methods. Average of 40

runs. Note the logarithmic scale on the X-axis.
69

Appendix C. Approximation experiments results

10 3 10 2 10 1 100

Sample size

5

6

7

8

9

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(a) as-22july06: Method RP

10 3 10 2 10 1 100

Sample size

5

6

7

8

9

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(b) as-22july06: Method RU

10 3 10 2 10 1 100

Sample size

5

6

7

8

9

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(c) as-22july06: Method OU

10 3 10 2 10 1 100

Sample size

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(d) cond-mat-2003: Method
RP

10 3 10 2 10 1 100

Sample size

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(e) cond-mat-2003: Method
RU

10 3 10 2 10 1 100

Sample size

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(f) cond-mat-2003: Method
OU

10 3 10 2 10 1 100

Sample size

6.5

7.0

7.5

8.0

8.5

9.0

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(g) ba-graph: Method RP

10 3 10 2 10 1 100

Sample size

6.5

7.0

7.5

8.0

8.5

9.0

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(h) ba-graph: Method RU

10 3 10 2 10 1 100

Sample size

6.5

7.0

7.5

8.0

8.5

9.0

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(i) ba-graph: Method OU

10 3 10 2 10 1 100

Sample size

11.0

11.2

11.4

11.6

11.8

12.0

12.2

12.4

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(j) er-graph: Method RP

10 3 10 2 10 1 100

Sample size

11.0

11.2

11.4

11.6

11.8

12.0

12.2

12.4

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(k) er-graph: Method RU

10 3 10 2 10 1 100

Sample size

11.0

11.2

11.4

11.6

11.8

12.0

12.2

12.4

Ap
pr

ox
im

at
io

n

True value
Mean
Max
Min
SD

(l) er-graph: Method OU

Figure C.4: Results of approximation experiments on the test graphs with
uniformly distributed weights using the three described methods. Average of 40

runs. Note the logarithmic scale on the X-axis.
70

Appendix D

Approximation experiments thresholds

See next pages.

71

Appendix D. Approximation experiments thresholds

Graph t RU p RU ē RP p RP ē OU p OU ē
as-22july06 5% 0.0007 4.344% 0.006 4.310% 0.0004 3.521%
as-22july06 1% 0.05 0.941% 0.7 0.920% 0.007 0.912%
as-22july06 0.5% 0.2 0.465% 0.85 0.437% 0.02 0.438%
as-22july06 0.1% 0.9 0.079% /0 /0 0.35 0.086%
cond-mat-2003 5% 0.0002 4.454% 0.0004 4.189% 0.0002 3.837%
cond-mat-2003 1% 0.007 0.819% 0.2 0.965% 0.005 0.875%
cond-mat-2003 0.5% 0.03 0.402% 0.55 0.475% 0.02 0.452%
cond-mat-2003 0.1% 0.3 0.079% 0.9 0.094% 0.3 0.098%
ba-graph 5% 0.0001 4.745% 0.0001 4.944% 0.0002 4.027%
ba-graph 1% 0.008 0.728% 0.45 0.944% 0.005 0.860%
ba-graph 0.5% 0.04 0.300% 0.75 0.493% 0.02 0.408%
ba-graph 0.1% 0.45 0.081% /0 /0 0.3 0.092%
er-graph 5% 0.0001 2.433% 0.0001 2.518% 0.0001 2.526%
er-graph 1% 0.0007 0.948% 0.001 0.875% 0.0006 0.824%
er-graph 0.5% 0.003 0.475% 0.007 0.498% 0.004 0.303%
er-graph 0.1% 0.08 0.091% 0.75 0.093% 0.07 0.093%

Table D.1: Threshold results on mean error on unweighted graphs

Graph t RU p RU maxe RP p RP maxe OU p OU maxe
as-22july06 10% 0.001 7.512% 0.003 8.031% 0.0009 6.580%
as-22july06 5% 0.03 4.415% 0.02 3.468% 0.003 2.676%
as-22july06 1% 0.4 0.794% 0.75 0.818% 0.05 0.985%
cond-mat-2003 10% 0.001 7.013% 0.0007 7.928% 0.0004 7.634%
cond-mat-2003 5% 0.002 2.996% 0.005 4.526% 0.002 4.301%
cond-mat-2003 1% 0.05 0.851% 0.35 0.925% 0.07 0.834%
ba-graph 10% 0.0005 7.870% 0.0008 6.706% 0.0007 7.605%
ba-graph 5% 0.004 3.551% 0.003 4.745% 0.002 4.756%
ba-graph 1% 0.07 0.850% 0.55 0.939% 0.03 0.989%
er-graph 10% 0.0001 7.241% 0.0001 8.450% 0.0001 8.242%
er-graph 5% 0.0003 3.972% 0.0004 4.570% 0.0003 4.921%
er-graph 1% 0.008 0.896% 0.02 0.995% 0.006 0.985%

Table D.2: Threshold results on maximum error on unweighted graphs

72

Appendix D. Approximation experiments thresholds

Graph t RU p RU ē RP p RP ē OU p OU ē
as-22july06 5% 0.003 4.583% 0.06 4.818% 0.0003 4.104%
as-22july06 1% 0.75 0.806% 0.25 0.768% 0.006 0.917%
as-22july06 0.5% 0.95 0.240% 0.3 0.371% 0.03 0.392%
as-22july06 0.1% /0 /0 0.95 0.091% 0.35 0.089%
cond-mat-2003 5% 0.0003 3.603% 0.0007 2.685% 0.0002 4.750%
cond-mat-2003 1% 0.009 0.932% 0.55 0.934% 0.005 0.836%
cond-mat-2003 0.5% 0.3 0.483% 0.75 0.472% 0.02 0.487%
cond-mat-2003 0.1% 0.85 0.092% 0.95 0.092% 0.3 0.084%
ba-graph 5% 0.0003 4.659% 0.0003 4.639% 0.0002 3.647%
ba-graph 1% 0.4 0.966% 0.13 0.941% 0.004 0.690%
ba-graph 0.5% 0.7 0.434% 0.25 0.383% 0.02 0.364%
ba-graph 0.1% 0.95 0.077% /0 /0 0.35 0.063%
er-graph 5% 0.0001 2.105% 0.0001 1.813% 0.0001 3.286%
er-graph 1% 0.001 0.755% 0.0009 0.871% 0.0006 0.721%
er-graph 0.5% 0.19 0.488% 0.003 0.485% 0.004 0.406%
er-graph 0.1% 0.9 0.058% 0.8 0.096% 0.08 0.082%

Table D.3: Threshold results on mean error on weighted graphs with unit
weights

Graph t RU p RU maxe RP p RP maxe OU p OU maxe
as-22july06 10% 0.007 9.780% 0.02 8.777% 0.0004 8.890%
as-22july06 5% 0.1 4.851% 0.07 4.765% 0.001 4.497%
as-22july06 1% 0.95 0.736% 0.3 0.550% 0.04 0.980%
cond-mat-2003 10% 0.0006 7.214% 0.002 9.470% 0.0003 6.965%
cond-mat-2003 5% 0.002 4.090% 0.02 4.028% 0.001 3.962%
cond-mat-2003 1% 0.17 0.880% 0.6 0.903% 0.03 0.883%
ba-graph 10% 0.0005 6.319% 0.0007 5.144% 0.0004 8.333%
ba-graph 5% 0.004 4.020% 0.01 4.852% 0.001 4.812%
ba-graph 1% 0.55 0.870% 0.19 0.983% 0.04 0.637%
er-graph 10% 0.0001 3.681% 0.0001 5.831% 0.0001 9.154%
er-graph 5% 0.0001 3.681% 0.0003 4.272% 0.0004 3.547%
er-graph 1% 0.03 0.914% 0.009 0.711% 0.006 0.817%

Table D.4: Threshold results on maximum error on weighted graphs with unit
weights

73

Appendix D. Approximation experiments thresholds

Graph t RU p RU ē RP p RP ē OU p OU ē
as-22july06 5% 0.02 3.171% 0.05 4.917% 0.0004 3.507%
as-22july06 1% 0.55 0.788% 0.19 0.942% 0.008 0.783%
as-22july06 0.5% 0.9 0.335% 0.75 0.491% 0.04 0.385%
as-22july06 0.1% /0 /0 /0 /0 0.5 0.094%
cond-mat-2003 5% 0.0008 3.871% 0.002 4.192% 0.0002 4.275%
cond-mat-2003 1% 0.05 0.900% 0.7 0.878% 0.008 0.873%
cond-mat-2003 0.5% 0.45 0.457% 0.85 0.426% 0.03 0.480%
cond-mat-2003 0.1% 0.9 0.084% /0 /0 0.5 0.059%
ba-graph 5% 0.0008 3.651% 0.0005 4.500% 0.0003 4.132%
ba-graph 1% 0.45 0.997% 0.1 0.940% 0.006 0.999%
ba-graph 0.5% 0.75 0.406% 0.75 0.485% 0.02 0.382%
ba-graph 0.1% 0.95 0.080% /0 /0 0.35 0.090%
er-graph 5% 0.0001 2.476% 0.0001 2.716% 0.0001 4.957%
er-graph 1% 0.003 0.919% 0.003 0.551% 0.001 0.897%
er-graph 0.5% 0.3 0.491% 0.009 0.412% 0.004 0.468%
er-graph 0.1% 0.9 0.073% 0.9 0.074% 0.13 0.078%

Table D.5: Threshold results on mean error on weighted graphs with normally
distributed weights

Graph t RU p RU maxe RP p RP maxe OU p OU maxe
as-22july06 10% 0.02 7.701% 0.007 9.993% 0.0006 8.075%
as-22july06 5% 0.16 4.088% 0.08 4.191% 0.005 3.460%
as-22july06 1% /0 /0 0.25 0.520% 0.07 0.980%
cond-mat-2003 10% 0.001 7.299% 0.002 9.830% 0.0009 9.298%
cond-mat-2003 5% 0.005 4.573% 0.05 4.120% 0.003 3.223%
cond-mat-2003 1% 0.3 0.841% 0.7 0.947% 0.09 0.640%
ba-graph 10% 0.0008 9.107% 0.0007 9.894% 0.0004 9.133%
ba-graph 5% 0.008 4.961% 0.007 3.948% 0.002 3.423%
ba-graph 1% 0.6 0.978% 0.17 0.949% 0.03 0.782%
er-graph 10% 0.0001 6.197% 0.0001 5.881% 0.0003 5.363%
er-graph 5% 0.0003 4.493% 0.0006 3.430% 0.0004 3.580%
er-graph 1% 0.06 0.889% 0.03 0.940% 0.03 0.376%

Table D.6: Threshold results on maximum error on weighted graphs with
normally distributed weights

74

Appendix D. Approximation experiments thresholds

Graph t RU p RU ē RP p RP ē OU p OU ē
as-22july06 5% 0.009 4.342% 0.002 3.999% 0.002 4.351%
as-22july06 1% 0.65 0.725% 0.75 0.921% 0.04 0.863%
as-22july06 0.5% 0.85 0.386% 0.9 0.388% 0.14 0.423%
as-22july06 0.1% /0 /0 /0 /0 0.85 0.061%
cond-mat-2003 5% 0.002 4.716% 0.25 4.936% 0.0008 4.763%
cond-mat-2003 1% 0.4 0.968% 0.85 0.929% 0.03 0.977%
cond-mat-2003 0.5% 0.7 0.471% 0.95 0.318% 0.13 0.377%
cond-mat-2003 0.1% /0 /0 /0 /0 0.75 0.079%
ba-graph 5% 0.003 4.390% 0.002 3.900% 0.0008 4.463%
ba-graph 1% 0.65 0.848% 0.8 0.860% 0.03 0.840%
ba-graph 0.5% 0.8 0.455% 0.9 0.498% 0.08 0.474%
ba-graph 0.1% /0 /0 /0 /0 0.75 0.075%
er-graph 5% 0.0003 3.061% 0.0001 4.911% 0.0003 2.330%
er-graph 1% 0.04 0.778% 0.008 0.492% 0.006 0.506%
er-graph 0.5% 0.5 0.421% 0.03 0.339% 0.01 0.471%
er-graph 0.1% 0.9 0.076% 0.9 0.095% 0.3 0.088%

Table D.7: Threshold results on mean error on weighted graphs with uniformly
distributed weights

Graph t RU p RU maxe RP p RP maxe OU p OU maxe
as-22july06 10% 0.03 5.061% 0.003 8.450% 0.002 9.626%
as-22july06 5% 0.19 4.144% 0.03 4.229% 0.01 3.514%
as-22july06 1% /0 /0 0.8 0.809% 0.2 0.855%
cond-mat-2003 10% 0.006 6.099% 0.05 9.414% 0.003 8.227%
cond-mat-2003 5% 0.02 4.354% 0.35 4.820% 0.008 2.911%
cond-mat-2003 1% 0.7 0.873% 0.9 0.703% 0.2 0.662%
ba-graph 10% 0.01 7.766% 0.004 9.382% 0.002 8.539%
ba-graph 5% 0.04 4.879% 0.02 2.975% 0.005 4.825%
ba-graph 1% 0.75 0.923% 0.8 0.944% 0.14 0.777%
er-graph 10% 0.0003 7.144% 0.0006 9.603% 0.0003 7.172%
er-graph 5% 0.001 4.881% 0.003 2.892% 0.003 3.106%
er-graph 1% 0.19 0.782% 0.04 0.868% 0.03 0.790%

Table D.8: Threshold results on maximum error on weighted graphs with
uniformly distributed weights

75

	Introduction
	Basic definitions and notations
	Literature review
	Faster exact calculation
	Analysis
	Complexity of computing the average path length
	Properties of a power-law distribution
	1-core simplification of a graph
	2-chains simplification of a graph
	Combined algorithm

	Implementation
	Experiments
	Test graphs
	Speed improvement
	Comparison to other tools

	Further usage

	Approximation using sampling
	Analysis
	Complexity

	Implementation
	Experiments
	Test graphs
	Experiments design
	Experiments results
	Speed of the approximation

	Interpretation of results
	Differences between methods
	Differences between weight distributions

	Conclusion
	Bibliography
	Acronyms
	Approximation experiments results
	Approximation experiments thresholds

